Tag Archives: sharon glotzer

Microbot muscles: Chains of particles assemble and flex

ANN ARBOR — In a step toward robots smaller than a grain of sand, University of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines. (more…)

Read More

Pinwheel ‘living’ crystals and the origin of life

ANN ARBOR — Simply making nanoparticles spin coaxes them to arrange themselves into what University of Michigan researchers call ‘living rotating crystals’ that could serve as a nanopump. They may also, incidentally, shed light on the origin of life itself.

The researchers refer to the crystals as ‘living’ because they, in a sense, take on a life of their own from very simple rules. (more…)

Read More

Fluid Cathedrals: Gels Under the Microscope

ANN ARBOR— A dollop of hair gel might not look like much, but Michigan Engineering researchers have found that it’s a labyrinth of chambers and domes, constructed by the particles inside. These structures allow the gel to hold its shape and determine how much pressure it can withstand before it starts to flow.

While manufacturers currently use trial and error to develop gels with a particular degree of solidity, this discovery could provide a way to design gels for particular applications. (more…)

Read More

Entropy Can Lead to Order, Paving The Route to Nanostructures

ANN ARBOR, Mich.— Researchers trying to herd tiny particles into useful ordered formations have found an unlikely ally: entropy, a tendency generally described as “disorder.”

Computer simulations by University of Michigan scientists and engineers show that the property can nudge particles to form organized structures. By analyzing the shapes of the particles beforehand, they can even predict what kinds of structures will form.

The findings, published in this week’s edition of Science, help lay the ground rules for making designer materials with wild capabilities such as shape-shifting skins to camouflage a vehicle or optimize its aerodynamics. (more…)

Read More

New Twist on Ancient Math Problem Could Improve Medicine, Microelectronics

ANN ARBOR, Mich.— A hidden facet of a math problem that goes back to timeworn Sanskrit manuscripts has just been exposed by nanotechnology researchers at the University of Michigan and the University of Connecticut.

It turns out we’ve been missing a version of the famous “packing problem,” and its new guise could have implications for cancer treatment, secure wireless networks, microelectronics and demolitions, the researchers say.

Called the “filling problem,” it seeks the best way to cover the inside of an object with a particular shape, such as filling a triangle with discs of varying sizes. Unlike the traditional packing problem, the discs can overlap. It also differs from the “covering problem” because the discs can’t extend beyond the triangle’s boundaries. (more…)

Read More