Tag Archives: atp

Newly Discovered Receptors in Plants Help Them Recover from Environmental Changes, Pests, and Plant Wounds, MU Study Shows

Discovery could lead to herbicides, fertilizers and pesticides that naturally work with plants to make them stronger

COLUMBIA, Mo. – ATP (adenosine triphosphate) is the main energy source inside a cell and is considered to be the high energy molecule that drives all life processes in animals and humans. Outside the cell, membrane receptors that attract ATP drive muscle control, neurotransmission, inflammation and development.  Now, researchers at the University of Missouri have found the same receptor in plants and believe it to be a vital component in the way plants respond to dangers, including pests, environmental changes and plant wounds. This discovery could lead to herbicides, fertilizers and insect repellants that naturally work with plants to make them stronger. (more…)

Read More

Gene therapy may aid failing hearts

The potential of gene therapy to boost heart muscle function was explored in a recent University of Washington animal study. The findings suggest that it might be possible to use this approach to treat patients whose hearts have been weakened by heart attacks and other heart conditions.

Michael Regnier, UW professor and vice chair of bioengineering, Charles Murry, director of the Center for Cardiovascular Biology and co-director of the Institute for Stem Cell and Regenerative Medicine, and Sarah Nowakowski, a UW graduate student in bioengineering, led the study. The findings appeared online March 25 in the Proceedings of the National Academy of Sciences. (more…)

Read More

Revealing the Secrets of Motility in Archaea

Scientists from Berkeley Lab and the Max Planck Institute for Terrestrial Microbiology analyze a unique microbial motor

The protein structure of the motor that propels archaea has been characterized for the first time by a team of scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Germany’s Max Planck Institute (MPI) for Terrestrial Microbiology.

The motility structure of this third domain of life has long been called a flagellum, a whip-like filament that, like the well-studied bacterial flagellum, rotates like a propeller. But although the archaeal structure has a similar function, it is so profoundly different in structure, genetics, and evolution that the researchers argue it deserves its own name: archaellum. (more…)

Read More

UMass Amherst Biochemists Trap a Chaperone Machine in Action, Opening Pathway to Possible New Cancer Treatment

AMHERST, Mass. – Molecular chaperones have emerged as exciting new potential drug targets, because scientists want to learn how to stop cancer cells, for example, from using chaperones to enable their uncontrolled growth. Now a team of biochemists at the University of Massachusetts Amherst led by Lila Gierasch have deciphered key steps in the mechanism of the Hsp70 molecular machine by “trapping” this chaperone in action, providing a dynamic snapshot of its mechanism.

She and colleagues describe this work in the current issue of Cell. Gierasch’s research on Hsp70 chaperones is supported by a long-running grant to her lab from NIH’s National Institute for General Medical Sciences. (more…)

Read More

Where the Germs Are: Office Kitchens, Break Rooms

A study aided by UA microbiologist Charles Gerba finds that office kitchens and break rooms are frequent hot spots for bacteria.

If you thought the restroom was the epicenter of workplace germs, you don’t want to know about office break rooms and kitchens.

The place where U.S. workers eat and prepare their lunches topped the list of office germ hot spots, with the sink and microwave door handles found to be the dirtiest surfaces touched by office workers on a daily basis. (more…)

Read More

UCLA Physicists Report Nanotechnology Feat With Proteins

UCLA physicists have made nanomechanical measurements of unprecedented resolution on protein molecules.

The new measurements, by UCLA physics professor Giovanni Zocchi and former UCLA physics graduate student Yong Wang, are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid.

“Proteins are the molecular machines of life, the molecules we are made of,” Zocchi said. “We have found that sometimes they behave as a solid and sometimes as a liquid. (more…)

Read More

One Step Closer to a Drug Treatment for Cystic Fibrosis, MU Professor Says

*Study recognized for significance and importance in the world’s most common genetic disease*

COLUMBIA, Mo. – A University of Missouri researcher believes his latest work moves scientists closer to a cure for cystic fibrosis, one of the world’s most common fatal genetic diseases. (more…)

Read More