Tag Archives: DNA

Fetch, Boy! Study Shows Homes with Dogs Have More Types of Bacteria

New research from North Carolina State University and the University of Colorado shows that households with dogs are home to more types of bacteria – including bacteria that are rarely found in households that do not have dogs. The finding is part of a larger study to improve our understanding of the microscopic life forms that live in our homes.

 “We wanted to know what variables influence the microbial ecosystems in our homes, and the biggest difference we’ve found so far is whether you own a dog,” says Dr. Rob Dunn, an associate professor of biology at NC State and co-author of a paper describing the work. “We can tell whether you own a dog based on the bacteria we find on your television screen or pillow case. For example, there are bacteria normally found in soil that are 700 times more common in dog-owning households than in those without dogs.” (more…)

Read More

Self-fertilizing plants contribute to their own demise

TORONTO, ON – Many plants are self-fertilizing, meaning they act as both mother and father to their own seeds. This strategy – known as selfing – guarantees reproduction but, over time, leads to reduced diversity and the accumulation of harmful mutations. A new study published in the scientific journal Nature Genetics shows that these negative consequences are apparent across a selfing plant’s genome, and can arise more rapidly than previously thought.

In the study, an international consortium led by Stephen Wright in the Department of Ecology and Evolutionary Biology at the University of Toronto and Detlef Weigel at the Max Planck Institute for Developmental Biology sequenced the genome of the plant species Capsella rubella, commonly known as Red Shepherd’s Purse. They found clear evidence that harmful mutations were accumulating over the species’ relatively short existence. (more…)

Read More

Tactics of new Middle East virus suggest treating by altering lung cells’ response to infection

A new virus that causes severe breathing distress and kidney failure elicits a distinctive airway cell response to allow it to multiply.  Scientists studying the Human Coronavirus-Erasmus Medical Center, which first appeared April 2012 in the Middle East, have discovered helpful details about its stronghold tactics.

Their findings predict that certain currently available compounds might treat the infection.  These could act not by killing the virus directly but by keeping lung cells from being forced to create a hospitable environment for the virus to reproduce.  The researchers caution that their lab and computer predictions would need to be tested to see if the drugs work clinically. (more…)

Read More

Monitoring concrete

UD professors study microbes as potential biomarkers for damaged concrete

Concrete is the most widely used construction material in the world. However, many concrete roadways and bridges crack due to internal chemical reactions, temperature fluctuations or external chemical and physical stresses.

One internal chemical reaction is the Alkali-Silica Reaction (ASR) that destroys the concrete from within.  (more…)

Read More

Gene therapy may aid failing hearts

The potential of gene therapy to boost heart muscle function was explored in a recent University of Washington animal study. The findings suggest that it might be possible to use this approach to treat patients whose hearts have been weakened by heart attacks and other heart conditions.

Michael Regnier, UW professor and vice chair of bioengineering, Charles Murry, director of the Center for Cardiovascular Biology and co-director of the Institute for Stem Cell and Regenerative Medicine, and Sarah Nowakowski, a UW graduate student in bioengineering, led the study. The findings appeared online March 25 in the Proceedings of the National Academy of Sciences. (more…)

Read More

Reading the Human Genome

Berkeley Lab Researchers Produce First Step-by-Step Look at Transcription Initiation

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have achieved a major advance in understanding how genetic information is transcribed from DNA to RNA by providing the first step-by-step look at the biomolecular machinery that reads the human genome.

“We’ve provided a series of snapshots that shows how the genome is read one gene at a time,” says biophysicist Eva Nogales who led this research. “For the genetic code to be transcribed into messenger RNA, the DNA double helix has to be opened and the strand of gene sequences has to be properly positioned so that RNA polymerase, the enzyme that catalyzes transcription, knows where the gene starts. The electron microscopy images we produced show how this is done.” (more…)

Read More

Isotope Fingerprints

Jaisi laboratory tracks chemicals in water, farmland throughout Mid-Atlantic

University of Delaware researcher Deb Jaisi is using his newly established stable isotope facility in the Environmental Biogeochemistry Laboratory (EBL) to find the fingerprints of isotopes in chemical elements — specifically phosphorus — in order to track sources of nutrients in the environmentally-sensitive Chesapeake Bay, other bodies of water and farmland throughout the Mid-Atlantic.

Jaisi, assistant professor in the Department of Plant and Soil Sciences in the College of Agriculture and Natural Resources, explained that he and his research team are currently working on many projects in the EBL, including two that are funded through seed grants, one focusing on terrestrial phosphorus sources and the other on marine phosphorus sources in the Chesapeake. One of those grants is from the UD Research Foundation (UDRF) and is titled “Role of Non-terrestrial Phosphorus Sources in Eutrophication in the Chesapeake Bay.” (more…)

Read More