Tag Archives: microbe

Boosting armor for nuclear-waste eating microbes

A microbe developed to clean up nuclear waste and patented by a Michigan State University researcher has just been improved.

In earlier research, Gemma Reguera, MSU microbiologist, identified that Geobacter bacteria’s tiny conductive hair-like appendages, or pili, did the yeoman’s share of remediation. By increasing the strength of the pili nanowires, she improved their ability to clean up uranium and other toxic wastes. (more…)

Read More

Tiny acts of microbe justice help reveal how nature fights freeloaders

The idea of everyone in a community pitching in is so universal that even bacteria have a system to prevent the layabouts of their kind from enjoying the fruit of others’ hard work, Princeton University researchers have discovered.

Groups of the bacteria Vibrio cholerae deny loafers their unjust desserts by keeping the food generated by the community’s productive members away from V. cholerae that attempt to live on others’ leftover nutrients, the researchers report in the journal Current Biology. The researchers found that individual bacteria produce a thick coating around themselves to prevent nutrients from drifting over to the undeserving. Alternatively, the natural flow of fluids over the surface of bacterial communities can wash away excess food before the freeloaders can indulge. (more…)

Read More

Curiosity Rover Explores ‘Yellowknife Bay’

Mars Science Laboratory Mission Status Report

PASADENA, Calif. – After imaging during the holidays, NASA’s Mars rover Curiosity resumed driving Jan. 3 and pulled within arm’s reach of a sinuous rock feature called “Snake River.”

Snake River is a thin curving line of darker rock cutting through flatter rocks and jutting above sand. Curiosity’s science team plans to get a closer look at it before proceeding to other nearby rocks. (more…)

Read More

Analysis of Dinosaur Bone Cells Confirms Ancient Protein Preservation

A team of researchers from North Carolina State University and the Palo Alto Research Center (PARC) has found more evidence for the preservation of ancient dinosaur proteins, including reactivity to antibodies that target specific proteins normally found in bone cells of vertebrates. These results further rule out sample contamination, and help solidify the case for preservation of cells – and possibly DNA – in ancient remains.

Dr. Mary Schweitzer, professor of marine, earth and atmospheric sciences with a joint appointment at the North Carolina Museum of Natural Sciences, first discovered what appeared to be preserved soft tissue in a 67-million-year-old Tyrannosaurus Rex in 2005. Subsequent research revealed similar preservation in an even older (about 80-million-year-old)Brachylophosaurus canadensis. In 2007 and again in 2009, Schweitzer and colleagues used chemical and molecular analyses to confirm that the fibrous material collected from the specimens was collagen. (more…)

Read More

Microbes in the Mississippi

Professor and students study how microbial life changes along the river

The mercury is pushing 100, but professor Michael Sadowsky and two assistants leave the indoor coolness for the bank of the Mississippi River as it flows by the University of Minnesota Twin Cities campus.

The three men send a bucket splashing into the current and haul back a water sample. That doesn’t affect the river much, but information locked away in bacteria from the sample may tell them a great deal about how the river’s microbial communities change along its course through Minnesota and how human activity affects them. (more…)

Read More

Jekyll and Hyde Bacteria Aids or Kills, Depending on Chance

EAST LANSING, Mich. — Living in the guts of worms are seemingly innocuous bacteria that contribute to their survival. With a flip of a switch, however, these same bacteria transform from harmless microbes into deadly insecticides.

In the current issue of Science, Michigan State University researchers led a study that revealed how a bacteria flips a DNA switch to go from an upstanding community member in the gut microbiome to deadly killer in insect blood.

Todd Ciche, assistant professor of microbiology and molecular genetics, has seen variants like this emerge sometimes by chance resulting in drastically different properties, such as being lethal to the host or existing in a state of mutual harmony. Even though human guts are more complex and these interactions are harder to detect, the revelation certainly offers new insight that could lead to medical breakthroughs, he said. (more…)

Read More

Microbe That Can Handle Ionic Liquids

New Find From Joint BioEnergy Institute Could Help Reduce Biofuel Production Costs

In the search for technology by which economically competitive biofuels can be produced from cellulosic biomass, the combination of sugar-fermenting microbes and ionic liquid solvents looks to be a winner save for one major problem: the ionic liquids used to make cellulosic biomass more digestible for microbes can also be toxic to them. A solution to this conundrum, however, may be in the offing.

Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), a multi-institutional partnership led by Berkeley Lab, have identified a tropical rainforest microbe that can endure relatively high concentrations of an ionic liquid used to dissolve cellulosic biomass. The researchers have also determined how the microbe is able to do this, a discovery that holds broad implications beyond the production of advanced biofuels. (more…)

Read More

From Soil Microbe to Super-Efficient Biofuel Factory?

Berkeley Lab-led team explores a way to create biofuels, minus the photosynthesis

Is there a new path to biofuels hiding in a handful of dirt? Lawrence Berkeley National Laboratory (Berkeley Lab) biologist Steve Singer leads a group that wants to find out. They’re exploring whether a common soil bacterium can be engineered to produce liquid transportation fuels much more efficiently than the ways in which advanced biofuels are made today.

The scientists are working with a bacterium called Ralstonia eutropha. It naturally uses hydrogen as an energy source to convert CO2 into various organic compounds. (more…)

Read More