Tag Archives: soil bacterium

Reducing arsenic in food chain

Soil may harbor answer to reducing arsenic in rice

Harsh Bais and Janine Sherrier of the University of Delaware’s Department of Plant and Soil Sciences are studying whether a naturally occurring soil bacterium, referred to asUD1023 because it was first characterized at the University, can create an iron barrier in rice roots that reduces arsenic uptake. (more…)

Read More

Microbe That Can Handle Ionic Liquids

New Find From Joint BioEnergy Institute Could Help Reduce Biofuel Production Costs

In the search for technology by which economically competitive biofuels can be produced from cellulosic biomass, the combination of sugar-fermenting microbes and ionic liquid solvents looks to be a winner save for one major problem: the ionic liquids used to make cellulosic biomass more digestible for microbes can also be toxic to them. A solution to this conundrum, however, may be in the offing.

Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), a multi-institutional partnership led by Berkeley Lab, have identified a tropical rainforest microbe that can endure relatively high concentrations of an ionic liquid used to dissolve cellulosic biomass. The researchers have also determined how the microbe is able to do this, a discovery that holds broad implications beyond the production of advanced biofuels. (more…)

Read More

From Soil Microbe to Super-Efficient Biofuel Factory?

Berkeley Lab-led team explores a way to create biofuels, minus the photosynthesis

Is there a new path to biofuels hiding in a handful of dirt? Lawrence Berkeley National Laboratory (Berkeley Lab) biologist Steve Singer leads a group that wants to find out. They’re exploring whether a common soil bacterium can be engineered to produce liquid transportation fuels much more efficiently than the ways in which advanced biofuels are made today.

The scientists are working with a bacterium called Ralstonia eutropha. It naturally uses hydrogen as an energy source to convert CO2 into various organic compounds. (more…)

Read More