Tag Archives: switchgrass

Microbial Who-Done-It for Biofuels

New Technique Identifies Populations Within a Microbial Community Responsible for Biomass Deconstruction

One of the keys to commercialization of advanced biofuels is the development of cost-competitive ways to extract fermentable sugars from lignocellulosic biomass. The use of enzymes from thermophiles – microbes that thrive at extremely high temperatures and alkaline conditions – holds promise for achieving this. Finding the most effective of these microbial enzymes, however, has been a challenge. That challenge has now been met by a collaboration led by researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI).

Working with a compost-derived consortium of thermophillic bacterium adapted to grow on switchgrass, a leading potential fuel crop, and using a combination of metagenomic and metaproteomic technologies, the collaboration has identified individual microbial species whose enzymes were the most active in deconstructing the switchgrass biomass. Major institutes in addition to JBEI participating in this collaboration included DOE’s Joint Genome Institute (JGI), and EMSL, the Environmental Molecular Sciences Laboratory, a national scientific user facility at Pacific Northwest National Laboratory (PNNL). (more…)

Read More

Avoiding Virus Dangers in ‘Domesticating’ Wild Plants for Biofuel Use

In our ongoing quest for alternative energy sources, researchers are looking more to plants that grow in the wild for use in biofuels, plants such as switchgrass.

However, attempts to “domesticate” wild-growing plants have a downside, as it could make the plants more susceptible to any number of plant viruses. (more…)

Read More

Biofuels Blend Right In

Researchers Show Ionic Liquids Effective for Pre-Treating Mixed Blends of Biofuel Feedstocks

Winemakers have long known that blending different grape varietals can favorably balance the flavor characteristics of the wine they produce. In the future, makers of advanced biofuels might use a similar strategy, blending different feedstock varieties to balance the energy characteristics of the transportation fuel they produce.

A collaborative study by researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), a bioenergy research center led by Berkeley Lab, and the Idaho National Laboratory (INL) has shown that an ionic liquid proven to be effective for pre-treating individual biofuel feedstocks is also effective at pre-treating multiple different feedstocks that have been mixed and densified into a blend. (more…)

Read More

Boosting Galactan Sugars Could Boost Biofuel Production

Collaboration at JBEI Identifies the First Enzyme Linked to Galactan Synthesis

Galactan is a polymer of galactose, a six-carbon sugar that can be readily fermented by yeast into ethanol and is a target of interest for researchers in advanced biofuels produced from cellulosic biomass. Now an international collaboration led by scientists at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) has identified the first enzyme capable of substantially boosting the amount of galactan in plant cell walls.

Unlike ethanol, advanced biofuels synthesized from the sugars in plant cells walls could replace gasoline, diesel and jet fuels on a gallon-for-gallon basis and be dropped into today’s engines and infrastructures with no modifications required. Also, adanced biofuels have the potential to be carbon-neutral, meaning they could be burned without adding excess carbon to the atmosphere. Among the key challenges to making advanced biofuels cost competitive is finding ways to maximize the amount of plant cell wall sugars that can be fermented into fuels. (more…)

Read More

MU Researchers Work to Further Biofuel Production without Increasing Food Prices

COLUMBIA, Mo. – America is looking for more biofuel through the use of crops such as corn and soybeans, but concerns about higher food prices persist when land for biofuel displaces land for food crops. Now, researchers at the University of Missouri are hoping to increase biofuel production without impacting food production. This fall, MU scientists are beginning a study to determine how non-food biofuel crops, such as switchgrass, grow in marginal land along the floodplains, where most crops cannot thrive.

Now, the team in the MU College of Agriculture, Food and Natural Resources has received a $5.4 million grant from the U.S. Department of Energy to further its research. The project is part of a $125 million international project to further research that will study how to use marginal land to grow high-yield, biofuel crops and convert them to advanced biofuels. (more…)

Read More

Microbe That Can Handle Ionic Liquids

New Find From Joint BioEnergy Institute Could Help Reduce Biofuel Production Costs

In the search for technology by which economically competitive biofuels can be produced from cellulosic biomass, the combination of sugar-fermenting microbes and ionic liquid solvents looks to be a winner save for one major problem: the ionic liquids used to make cellulosic biomass more digestible for microbes can also be toxic to them. A solution to this conundrum, however, may be in the offing.

Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), a multi-institutional partnership led by Berkeley Lab, have identified a tropical rainforest microbe that can endure relatively high concentrations of an ionic liquid used to dissolve cellulosic biomass. The researchers have also determined how the microbe is able to do this, a discovery that holds broad implications beyond the production of advanced biofuels. (more…)

Read More

Mapping Grasslands for Biofuel Potential

USGS scientists have developed a new method for mapping grasslands that demonstrate high potential for growing biofuel crops with relatively little energy input and environmental impact.

The pioneering investigation used remote sensing data from satellites to identify detailed areas of the Greater Platte River Basin (most of Nebraska, parts of adjacent states) that are best suited for producing cellulosic (from the cell walls of plants) biofuel derived from hardy switchgrass, a native plant that grows wild or is easily cultivated. (more…)

Read More

Fill ‘Er Up With Tobacco? Berkeley Lab-Led Team Explores New Path to Biofuels

*ARPA-E funded project aims to produce fuel molecules in plant leaves*

Mention biofuels and most people think of corn ethanol. Some may think of advanced biofuels from switchgrass or miscanthus. But tobacco? Not likely.

That could change. A team of scientists led by a researcher from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) is exploring a way to produce gasoline, diesel, and jet fuel from the iconic plant of the South. (more…)

Read More