Avoiding Virus Dangers in ‘Domesticating’ Wild Plants for Biofuel Use
In our ongoing quest for alternative energy sources, researchers are looking more to plants that grow in the wild for use in biofuels, plants such as switchgrass. (more…)
In our ongoing quest for alternative energy sources, researchers are looking more to plants that grow in the wild for use in biofuels, plants such as switchgrass. (more…)
Collaboration at JBEI Identifies the First Enzyme Linked to Galactan Synthesis
Galactan is a polymer of galactose, a six-carbon sugar that can be readily fermented by yeast into ethanol and is a target of interest for researchers in advanced biofuels produced from cellulosic biomass. Now an international collaboration led by scientists at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) has identified the first enzyme capable of substantially boosting the amount of galactan in plant cell walls.
Unlike ethanol, advanced biofuels synthesized from the sugars in plant cells walls could replace gasoline, diesel and jet fuels on a gallon-for-gallon basis and be dropped into today’s engines and infrastructures with no modifications required. Also, adanced biofuels have the potential to be carbon-neutral, meaning they could be burned without adding excess carbon to the atmosphere. Among the key challenges to making advanced biofuels cost competitive is finding ways to maximize the amount of plant cell wall sugars that can be fermented into fuels. (more…)
COLUMBIA, Mo. – America is looking for more biofuel through the use of crops such as corn and soybeans, but concerns about higher food prices persist when land for biofuel displaces land for food crops. Now, researchers at the University of Missouri are hoping to increase biofuel production without impacting food production. This fall, MU scientists are beginning a study to determine how non-food biofuel crops, such as switchgrass, grow in marginal land along the floodplains, where most crops cannot thrive.
Now, the team in the MU College of Agriculture, Food and Natural Resources has received a $5.4 million grant from the U.S. Department of Energy to further its research. The project is part of a $125 million international project to further research that will study how to use marginal land to grow high-yield, biofuel crops and convert them to advanced biofuels. (more…)
New Find From Joint BioEnergy Institute Could Help Reduce Biofuel Production Costs
In the search for technology by which economically competitive biofuels can be produced from cellulosic biomass, the combination of sugar-fermenting microbes and ionic liquid solvents looks to be a winner save for one major problem: the ionic liquids used to make cellulosic biomass more digestible for microbes can also be toxic to them. A solution to this conundrum, however, may be in the offing.
Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), a multi-institutional partnership led by Berkeley Lab, have identified a tropical rainforest microbe that can endure relatively high concentrations of an ionic liquid used to dissolve cellulosic biomass. The researchers have also determined how the microbe is able to do this, a discovery that holds broad implications beyond the production of advanced biofuels. (more…)
USGS scientists have developed a new method for mapping grasslands that demonstrate high potential for growing biofuel crops with relatively little energy input and environmental impact.
The pioneering investigation used remote sensing data from satellites to identify detailed areas of the Greater Platte River Basin (most of Nebraska, parts of adjacent states) that are best suited for producing cellulosic (from the cell walls of plants) biofuel derived from hardy switchgrass, a native plant that grows wild or is easily cultivated. (more…)
*ARPA-E funded project aims to produce fuel molecules in plant leaves*
Mention biofuels and most people think of corn ethanol. Some may think of advanced biofuels from switchgrass or miscanthus. But tobacco? Not likely.
That could change. A team of scientists led by a researcher from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) is exploring a way to produce gasoline, diesel, and jet fuel from the iconic plant of the South. (more…)
*Water significant limiting factor in growing crops like switchgrass*
Energy researchers and environmental advocates are excited about the prospect of gaining more efficient large-scale biofuel production by using large grasses like miscanthus or switchgrass rather than corn.
They have investigated yields, land use, economics and more, but one key factor of agriculture has been overlooked: water.
“While we are looking for solutions for energy through bioenergy crops, dependence on water gets ignored, and water can be a significant limiting factor,” said Praveen Kumar, an environmental engineer and atmospheric scientist at the University of Illinois at Urbana-Champaign. (more…)
*Growth of cropland, loss of natural habitat to blame*
The continued growth of cropland and loss of natural habitat have increasingly simplified agricultural landscapes in the Midwest.
In a study supported in part by the National Science Foundation’s (NSF) Kellogg Biological Station Long-Term Ecological Research (LTER) site in Michigan–one of 26 such NSF LTER sites around the world–scientists concluded that this simplification is associated with increased crop pest abundance and insecticide use. (more…)