Tag Archives: mice

New Key to Organism Complexity Identified

Berkeley Scientists Find that a Critical Transcription Factor Co-exists in Two Distinct States

The enormously diverse complexity seen amongst individual species within the animal kingdom evolved from a surprisingly small gene pool. For example, mice effectively serve as medical research models because humans and mice share 80-percent of the same protein-coding genes. The key to morphological and behavioral complexity, a growing body of scientific evidence suggests, is the regulation of gene expression by a family of DNA-binding proteins called “transcription factors.” Now, a team of researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley has discovered the secret behind how one these critical transcription factors is able to perform – a split personality. (more…)

Read More

Genes and obesity: Fast food isn’t only culprit in expanding waistlines — DNA is also to blame

Researchers at UCLA say it’s not just what you eat that makes those pants tighter — it’s also genetics. In a new study, scientists discovered that body-fat responses to a typical fast-food diet are determined in large part by genetic factors, and they have identified several genes they say may control those responses.

The study is the first of its kind to detail metabolic responses to a high-fat, high-sugar diet in a large and diverse mouse population under defined environmental conditions, modeling closely what is likely to occur in human populations. The researchers found that the amount of food consumed contributed only modestly to the degree of obesity. (more…)

Read More

Previous Studies on Toxic Effects of BPA Couldn’t be Reproduced, says MU Research Team

The MU study is not claiming that BPA is safe, but that the previous series of studies are not reproducible.

COLUMBIA, Mo. — Following a three-year study using more than 2,800 mice, a University of Missouri researcher was not able to replicate a series of previous studies by another research group investigating the controversial chemical BPA. The MU study is not claiming that BPA is safe, but that the previous series of studies are not reproducible. The MU study, published in the Proceedings of the National Academy of Sciences, also investigated an estrogenic compound found in plants, genistein, in the same three-year study.

“Our findings don’t say anything about the positive or negative effects of BPA or genistein,” said Cheryl Rosenfeld, associate professor of biomedical sciences in MU’s Bond Life Science Center. “Rather, our series of experiments did not detect the same findings as reported by another group on the potential developmental effects of BPA and genistein when exposure of young occurs in the womb.” (more…)

Read More

Berkeley Lab Scientists Help Develop Promising Therapy for Huntington’s Disease

Initial results in mice could lead to new way to fight neurodegenerative diseases

There’s new hope in the fight against Huntington’s disease. A group of researchers that includes scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed a compound that suppresses symptoms of the devastating disease in mice.

The compound is a synthetic antioxidant that targets mitochondria, an organelle within cells that serves as a cell’s power plant. Oxidative damage to mitochondria is implicated in many neurodegenerative diseases including Alzheimer’s, Parkinson’s, and Huntington’s. (more…)

Read More

New Insights into How Genetic Differences among Individuals Influence Breast Cancer Risk from Low-Dose Radiation

Berkeley Lab research could lead to new ways to ID women who have higher risk of breast cancer from low-dose radiation

Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have identified tissue mechanisms that may influence a woman’s susceptibility or resistance to breast cancer after exposure to low-dose ionizing radiation, such as the levels used in full-body CT scans and radiotherapy.

The research could lead to new ways to identify women who have higher or lower risks of breast cancer from low-dose radiation. Such a predictive tool could help guide the treatment of cancer patients who may be better served by non-radiation therapies. (more…)

Read More

Scientists Dramatically Reduce Plaque-Forming Substances in Mice with Alzheimer’s Disease

COLUMBUS, Ohio – Scientists have found that eliminating an enzyme from mice with symptoms of Alzheimer’s disease leads to a 90 percent reduction in the compounds responsible for formation of the plaques linked to Alzheimer’s disease.

That is the most dramatic reduction in this compound reported to date in published research.

The compounds are amyloid beta, or A-beta peptides; peptides are proteins, but are shorter in length. When A-beta peptides accumulate in excessive amounts in the brain, they can form plaques, which are a hallmark of Alzheimer’s disease. (more…)

Read More

Precautions for Tick-Borne Disease Extend “Beyond Lyme”

Save the tick that bites you: it may not be the one you think

This year’s mild winter and early spring were a bonanza for tick populations in the eastern United States. Reports of tick-borne disease rose fast.

While Lyme disease is the most common tick-borne disease in the Northeast and Upper Midwest, new research results emphasize that it is not the greatest cause for concern in most Southeastern states.

The findings are published today in a paper in the journal Zoonoses and Public Health. (more…)

Read More

Common Antifungal Drug Decreases Tumor Growth and Shows Promise as Cancer Therapy

AUSTIN, Texas — An inexpensive antifungal drug, thiabendazole, slows tumor growth and shows promise as a chemotherapy for cancer. Scientists in the College of Natural Sciences at The University of Texas at Austin made this discovery by exploiting the evolutionary relatedness of yeast, frogs, mice and humans.

Thiabendazole is an FDA-approved, generic drug taken orally that has been in clinical use for 40 years as an antifungal. It is not currently used for cancer therapy.

Hye Ji Cha, Edward Marcotte, John Wallingford and colleagues found that the drug destroys newly established blood vessels, making it a “vascular disrupting agent.” Their research was published in the journal PLoS Biology. (more…)

Read More