Tag Archives: lulu tsai

Early neural wiring for smell persists

A new study in Science reveals that the fundamental wiring of the olfactory system in mice sets up shortly after birth and then remains stable but adaptable. The research highlights how important early development can be throughout life and provides insights that may be important in devising regenerative medical therapies in the nervous system.

PROVIDENCE, R.I. [Brown University] — To accommodate a lifetime of scents and aromas, mammals have hundreds of genes that each produce a different odorant receptor. The complex and diverse olfactory system they build remains adaptable, but a new study in the journal Science shows that the system’s flexibility, or plasticity, has its limits. Working in mice, Brown University scientists found that the fundamental neural wiring map between the nose and the brain becomes established in a critical period of early development and then regenerates the same map thereafter. (more…)

Read More

Mice Have System to Handle Smell of Fear

Mice appear to have a specialized system for detecting and at least initially processing instinctually important smells such as those that denote predators. The finding raises a question about whether their response to those smells is hardwired.

PROVIDENCE, R.I. [Brown University] — A new study finds that mice have a distinct neural subsystem that links the nose to the brain and is associated with instinctually important smells such as those emitted by predators. That insight, published online this week in Proceedings of the National Academy of Sciences, prompts the question whether mice and other mammals have specially hardwired neural circuitry to trigger instinctive behavior in response to certain smells.

In the series of experiments and observations described in the paper, the authors found that nerve cells in the nose that express members of the gene family of trace amine-associated receptors (TAAR) have several key biological differences from the much more common and diverse neurons that express members of the olfactory receptor gene family. Those other nerve cells detect a much broader range of smells, said corresponding author Gilad Barnea, the Robert and Nancy Carney Assistant Professor of Neuroscience at Brown University. (more…)

Read More