Study suggests potential new target in fight against debilitating disease
For several years, neurologists at UCLA have been building a case that a link exists between pesticides and Parkinson’s disease. To date, paraquat, maneb and ziram — common chemicals sprayed in California’s Central Valley and elsewhere — have been tied to increases in the disease, not only among farmworkers but in individuals who simply lived or worked near fields and likely inhaled drifting particles.
Now, UCLA researchers have discovered a link between Parkinson’s and another pesticide, benomyl, whose toxicological effects still linger some 10 years after the chemical was banned by the U.S. Environmental Protection Agency. (more…)
Researchers at Michigan State University have discovered a protein that does its best work with one foot in the grave.
The study, which appears in the current issue of the Journal of Biological Chemistry, focuses on the nontraditional lifestyle of Retinoblastoma tumor suppressor proteins, which could lead to new ways to treat cancer.
“Retinoblastoma proteins are unique in that they use controlled destruction to do their jobs in a timely but restrained fashion,” said Liang Zhang, a lead author and MSU cell and molecular biology graduate student. “This is an unusual way for proteins to act.” (more…)
COLUMBIA, Mo. — Approximately 250,000 people in the United States suffer from muscular dystrophy, which occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function. Three years ago, University of Missouri scientists found a molecular compound that is vital to curing the disease, but they didn’t know how to make the compound bind to the muscle cells. In a new study, published in the Proceedings of the National Academies of Science, MU School of Medicine scientists Yi Lai and Dongsheng Duan have discovered the missing pieces to this puzzle that could ultimately lead to a therapy and, potentially, a longer lifespan for patients suffering from the disease.
Duchenne muscular dystrophy (DMD), predominantly affecting males, is the most common type of muscular dystrophy. Patients with Duchenne muscular dystrophy have a gene mutation that disrupts the production of dystrophin, a protein essential for muscle cell survival and function. Absence of dystrophin starts a chain reaction that eventually leads to muscle cell degeneration and death. While dystrophin is vital for muscle development, the protein also needs several “helpers” to maintain the muscle tissue. One of these “helper” molecular compounds is nNOS, which produces nitric oxide that can keep muscle cells healthy after exercise. (more…)
COLUMBUS, Ohio – A new way to visualize single-cell activity in living zebrafish embryos has allowed scientists to clarify how cells line up in the right place at the right time to receive signals about the next phase of their life.
Scientists developed the imaging tool in single living cells by fusing a protein defining the cells’ cyclical behavior to a yellow fluorescent protein that allows for visualization. Zebrafish embryos are already transparent, but with this closer microscopic look at the earliest stages of life, the researchers have answered two long-standing questions about how cells cooperate to form embryonic segments that later become muscle and vertebrae. (more…)
ANN ARBOR — Nisin, a common food preservative, may slow or stop squamous cell head and neck cancers, a University of Michigan study found.
What makes this particularly good news is that the Food and Drug Administration and the World Health Organization approved nisin as safe for human consumption decades ago, says Yvonne Kapila, the study’s principal investigator and professor at the University of Michigan School of Dentistry. (more…)
Study part of growing body of knowledge surrounding gene-environment interplay
TORONTO, ON – It is time to put the nature versus nurture debate to rest and embrace growing evidence that it is the interaction between biology and environment in early life that influences human development, according to a series of studies recently published in a special edition of the Proceedings of the National Academy of Sciences (PNAS).
“Biologists used to think that our differences are pre-programmed in our genes, while psychologists argued that babies are born with a blank slate and their experience writes on it to shape them into the adults they become. Instead, the important question to be asking is, ‘How is our experience in early life getting embedded in our biology?’” says University of Toronto behavioural geneticist Marla Sokolowski. She is co-editor of the PNAS special edition titled “Biological Embedding of Early Social Adversity: From Fruit Flies to Kindergarteners” along with professors Tom Boyce (University of British Columbia) and Gene Robinson (University of Illinois). (more…)
Ingesting silver — in antimicrobial health tonics or for extensive medical treatments involving silver — can cause argyria, condition in which the skin turns grayish-blue. Brown researchers have discovered how that happens. The process is similar to developing black-and-white photographs, and it’s not just the silver.
PROVIDENCE, R.I. [Brown University] — Researchers from Brown University have shown for the first time how ingesting too much silver can cause argyria, a rare condition in which patients’ skin turns a striking shade of grayish blue.
“It’s the first conceptual model giving the whole picture of how one develops this condition,” said Robert Hurt, professor of engineering at Brown and part of the research team. “What’s interesting here is that the particles someone ingests aren’t the particles that ultimately cause the disorder.” (more…)
A team of researchers from North Carolina State University and the Palo Alto Research Center (PARC) has found more evidence for the preservation of ancient dinosaur proteins, including reactivity to antibodies that target specific proteins normally found in bone cells of vertebrates. These results further rule out sample contamination, and help solidify the case for preservation of cells – and possibly DNA – in ancient remains.
Dr. Mary Schweitzer, professor of marine, earth and atmospheric sciences with a joint appointment at the North Carolina Museum of Natural Sciences, first discovered what appeared to be preserved soft tissue in a 67-million-year-old Tyrannosaurus Rex in 2005. Subsequent research revealed similar preservation in an even older (about 80-million-year-old)Brachylophosaurus canadensis. In 2007 and again in 2009, Schweitzer and colleagues used chemical and molecular analyses to confirm that the fibrous material collected from the specimens was collagen. (more…)