Tag Archives: berkeley lab

Berkeley Lab Study Shows Significantly Higher Potential for Wind Energy in India than Previously Estimated

A new assessment of wind energy in India by Lawrence Berkeley National Laboratory has found that the potential for on-shore wind energy deployment is far higher than the official estimates— about 20 times and up to 30 times greater than the current government estimate of 102 gigawatts. This landmark finding may have significant impact on India’s renewable energy strategy as it attempts to cope with a massive and chronic shortage of electricity.

“The main importance of this study, why it’s groundbreaking, is that wind is one of the most cost-effective and mature renewable energy sources commercially available in India, with an installed capacity of 15 GW and rising rapidly,” says Berkeley Lab scientist Amol Phadke, the lead author of the report. “The cost of wind power is now comparable to that from imported coal and natural gas-based plants, and wind can play a significant role in cost effectively addressing energy security and environmental concerns.” (more…)

Read More

Better Organic Electronics

*Berkeley Lab Researchers Show the Way Forward for Improving Organic and Molecular Electronic Devices*

Future prospects for superior new organic electronic devices are brighter now thanks to a new study by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). Working at the Lab’s Molecular Foundry, a DOE nanoscience center, the team has provided the first experimental determination of the pathways by which electrical charge is transported from molecule-to-molecule in an organic thin film. Their results also show how such organic films can be chemically modified to improve conductance.

“We have shown that when the molecules in organic thin films are aligned in particular directions, there is much better conductance,” says Miquel Salmeron, a leading authority on nanoscale surface imaging who directs Berkeley Lab’s Materials Sciences Division and who led this study. “Chemists already know how to fabricate organic thin films in a way that can achieve such an alignment, which means they should be able to use the information provided by our methodology to determine the molecular alignment and its role on charge transport across and along the molecules. This will help improve the performances of future organic electronic devices.” (more…)

Read More

The First Spectroscopic Measurement of an Anti-Atom

*Berkeley Lab scientists helped build and operate the ALPHA antimatter trap at CERN, which has now probed the internal structure of the antihydrogen atom for the first time, taking the first step toward possible new insights into the difference between matter and antimatter*

The ALPHA collaboration at CERN in Geneva has scored another coup on the antimatter front by performing the first-ever spectroscopic measurements of the internal state of the antihydrogen atom. Their results are reported in a forthcoming issue of Nature and are now online.

Ordinary hydrogen atoms are the most plentiful in the universe, and also the simplest – so simple, in fact, that some of the most fundamental physical constants have been discovered by measuring the tiny energy shifts resulting from the magnetic and electric interactions of hydrogen’s proton nucleus with its single orbiting electron. (more…)

Read More

Responding to the Radiation Threat

*Berkeley Lab Researchers Developing Promising Treatment for Safely Decontaminating Humans Exposed to Radioactive Actinides*

The New York Times recently reported that in the darkest moments of the triple meltdown last year of the Fukushima Daiichi nuclear power plant, Japanese officials considered the evacuation of the nearly 36 million residents of the Tokyo metropolitan area. The consideration of so drastic an action reflects the harsh fact that in the aftermath of a major radiation exposure event, such as a nuclear reactor accident or a “dirty bomb” terrorist attack, treatments for mass contamination are antiquated and very limited. The only chemical agent now available for decontamination – a compound known as DTPA – is a Cold War relic that must be administered intravenously and only partially removes some of the deadly actinides – the radioactive chemical elements spanning from actinium to lawrencium on the periodic table – that pose the greatest health threats. (more…)

Read More

Solving a Spintronic Mystery:

*Berkeley Lab Researchers Resolve Controversy Over Gallium Manganese Arsenide that Could Boost Spintronic Performance*

A long-standing controversy regarding the semiconductor gallium manganese arsenide, one of the most promising materials for spintronic technology, looks to have been resolved. Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) in collaboration with scientist from University of Notre Dame have determined the origin of the charge-carriers responsible for the ferromagnetic properties that make gallium manganese arsenide such a hot commodity for spintronic devices. Such devices utilize electron spin rather than charge to read and write data, resulting in smaller, faster and much cheaper data storage and processing. (more…)

Read More

Fill ‘Er Up With Tobacco? Berkeley Lab-Led Team Explores New Path to Biofuels

*ARPA-E funded project aims to produce fuel molecules in plant leaves*

Mention biofuels and most people think of corn ethanol. Some may think of advanced biofuels from switchgrass or miscanthus. But tobacco? Not likely.

That could change. A team of scientists led by a researcher from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) is exploring a way to produce gasoline, diesel, and jet fuel from the iconic plant of the South. (more…)

Read More

Hydrogen from Acidic Water: Berkeley Lab Researchers Develop a Potential Low Cost Alternative to Platinum for Splitting Water

A technique for creating a new molecule that structurally and chemically replicates the active part of the widely used industrial catalyst molybdenite has been developed by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This technique holds promise for the creation of catalytic materials that can serve as effective low-cost alternatives to platinum for generating hydrogen gas from water that is acidic.

Christopher Chang and Jeffrey Long, chemists who hold joint appointments with Berkeley Lab and the University of California (UC) Berkeley, led a research team that synthesized a molecule to mimic the triangle-shaped molybdenum disulfide units along the edges of molybdenite crystals, which is where almost all of the catalytic activity takes place. Since the bulk of molybdenite crystalline material is relatively inert from a catalytic standpoint, molecular analogs of the catalytically active edge sites could be used to make new materials that are much more efficient and cost-effective catalysts. (more…)

Read More

Berkeley Lab Researchers Discover a Rotational Motion of Cells that Plays a Critical Role in Their Normal Development

In a study that holds major implications for breast cancer research as well as basic cell biology, scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a rotational motion that plays a critical role in the ability of breast cells to form the spherical structures in the mammary gland known as acini. This rotation, which the researchers call “CAMo,” for coherent angular motion, is necessary for the cells to form spheres. Without CAMo, the cells do not form spheres, which can lead to random motion, loss of structure and malignancy.

”What is most exciting to me about this stunning discovery is that it may finally give us a handle by which to discover the physical laws of cellular motion as they apply to biology,” says Mina Bissell, a leading authority on breast cancer and Distinguished Scientist with Berkeley Lab’s Life Sciences Division. (more…)

Read More