Tag Archives: advanced biofuels

Microbial Who-Done-It for Biofuels

New Technique Identifies Populations Within a Microbial Community Responsible for Biomass Deconstruction

One of the keys to commercialization of advanced biofuels is the development of cost-competitive ways to extract fermentable sugars from lignocellulosic biomass. The use of enzymes from thermophiles – microbes that thrive at extremely high temperatures and alkaline conditions – holds promise for achieving this. Finding the most effective of these microbial enzymes, however, has been a challenge. That challenge has now been met by a collaboration led by researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI).

Working with a compost-derived consortium of thermophillic bacterium adapted to grow on switchgrass, a leading potential fuel crop, and using a combination of metagenomic and metaproteomic technologies, the collaboration has identified individual microbial species whose enzymes were the most active in deconstructing the switchgrass biomass. Major institutes in addition to JBEI participating in this collaboration included DOE’s Joint Genome Institute (JGI), and EMSL, the Environmental Molecular Sciences Laboratory, a national scientific user facility at Pacific Northwest National Laboratory (PNNL). (more…)

Read More

New Advance in Biofuel Production

Joint BioEnergy Institute Researchers Develop Enzyme-free Ionic Liquid Pre-treatment

Advanced biofuels – liquid fuels synthesized from the sugars in cellulosic biomass – offer a clean, green and renewable alternative to gasoline, diesel and jet fuels. Bringing the costs of producing these advanced biofuels down to competitive levels with petrofuels, however, is a major challenge. Researchers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), a bioenergy research center led by Berkeley Lab, have taken another step towards meeting this challenge with the development of a new technique for pre-treating cellulosic biomass with ionic liquids – salts that are liquids rather than crystals at room temperature. This new technique requires none of the expensive enzymes used in previous ionic liquid pretreatments, and makes it easier to recover fuel sugars and recycle the ionic liquid. (more…)

Read More

Sweet Success: Berkeley Lab Researchers Find Way to Catalyze More Sugars from Biomass

Catalysis may initiate almost all modern industrial manufacturing processes, but catalytic activity on solid surfaces is poorly understood. This is especially true for the cellulase enzymes used to release fermentable sugars from cellulosic biomass for the production of advanced biofuels. Now, researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) through support from the Energy Biosciences Institute (EBI) have literally shed new light on cellulase  catalysis.

Using an ultrahigh-precision visible light microscopy technique called PALM – for Photo-Activated Localization Microscopy – the researchers have found a way to improve the collective catalytic activity of enzyme cocktails that can boost the yields of sugars for making fuels. Increasing the sugar yields from cellulosic biomass to help bring down biofuel production costs is essential for the widespread commercial adoption of these fuels. (more…)

Read More

Clearing a Potential Road Block to Bisabolane

*Joint BioEnergy Institute Researchers Identify Key Enzyme Structure*

The recent discovery that bisabolane, a member of the terpene class of chemical compounds used in fragrances and flavorings, holds high promise as a biosynthetic alternative to D2 diesel fuel has generated keen interest in the green energy community and the trucking industry. Now a second team of researchers with the U.S Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) has determined the three-dimensional crystal structure of a protein that is key to boosting the microbial-based production of bisabolane as an advanced biofuel.

The JBEI research team, led by bioengineers Paul Adams and Jay Keasling, solved the protein crystal structure of an enzyme in the Grand fir (Abies grandis) that synthesizes bisabolene, the immediate terpene precursor to bisabolane. The performance of this enzyme – the Abies grandis α-bisabolene synthase (AgBIS) – when engineered into microbes, has resulted in a bottleneck that hampers the conversion by the microbes of simple sugars into bisabolene. (more…)

Read More