Tag Archives: human tissue

Earthquakes, Glue and Grappling Hooks: Scientists Dissect the Movement of Bacteria

A team led by researchers from the UCLA Henry Samueli School of Engineering and Applied Science has discovered that microscopic bacteria have a lot in common with earthquakes — when it comes to their jolting movements.

In a new study published in the peer-reviewed Proceedings of the National Academy of Sciences, the scientists also report that a molecular “glue” produced by the bacteria to help them adhere to surfaces also acts as a sort of transportation lubricant, helping them move and organize into rudimentary social structures. These discoveries, they say, could lead to new ways to combat harmful microbes in the long term. (more…)

Read More

Ferroelectric Switching Discovered For First Time in Soft Biological Tissue

The heart’s inner workings are mysterious, perhaps even more so with a new finding. Engineers at the University of Washington have discovered an electrical property in arteries not seen before in mammalian tissues.

The researchers found that the wall of the aorta, the largest blood vessel carrying blood from the heart, exhibits ferroelectricity, a response to an electric field known to exist in inorganic and synthetic materials. The findings are being published in an upcoming issue of the journal Physical Review Letters. (more…)

Read More

New Take on Impacts of Low Dose Radiation

*Berkeley Lab Researchers Find Evidence Suggesting Risk May Not Be Proportional to Dose at Low Dose Levels*

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), through a combination of time-lapse live imaging and mathematical modeling of a special line of human breast cells, have found evidence to suggest that for low dose levels of ionizing radiation, cancer risks may not be directly proportional to dose. This contradicts the standard model for predicting biological damage from ionizing radiation – the linear-no-threshold hypothesis or LNT – which holds that risk is directly proportional to dose at all levels of irradiation.

“Our data show that at lower doses of ionizing radiation, DNA repair mechanisms work much better than at higher doses,” says Mina Bissell, a world-renowned breast cancer researcher with Berkeley Lab’s Life Sciences Division. “This non-linear DNA damage response casts doubt on the general assumption that any amount of ionizing radiation is harmful and additive.” (more…)

Read More