Tag Archives: berkeley lab

Berkeley Lab Scientists Generate Electricity From Viruses

New approach is a promising first step toward the development of tiny devices that harvest electrical energy from everyday tasks

Imagine charging your phone as you walk, thanks to a paper-thin generator embedded in the sole of your shoe. This futuristic scenario is now a little closer to reality. Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to generate power using harmless viruses that convert mechanical energy into electricity.

The scientists tested their approach by creating a generator that produces enough current to operate a small liquid-crystal display. It works by tapping a finger on a postage stamp-sized electrode coated with specially engineered viruses. The viruses convert the force of the tap into an electric charge. (more…)

Read More

Brighter, Smaller Probes to Uncover the Secret Lives of Proteins

Berkeley Lab scientists create nanoparticle probes that may lead to a better understanding of diseases

Imagine tracking a deer through a forest by clipping a radio transmitter to its ear and monitoring the deer’s location remotely. Now imagine that transmitter is the size of a house, and you understand the problem researchers may encounter when they try to use nanoparticles to track proteins in live cells.

Understanding how a protein moves around a cell helps researchers understand the protein’s function and the cellular mechanisms for making and processing proteins. This information also helps researchers study disease, which at a cellular level may mean that a protein is malfunctioning, stops being made, or is sent to the wrong part of the cell. But nanoparticle probes that are too big can disrupt a protein’s normal activities. (more…)

Read More

From Soil Microbe to Super-Efficient Biofuel Factory?

Berkeley Lab-led team explores a way to create biofuels, minus the photosynthesis

Is there a new path to biofuels hiding in a handful of dirt? Lawrence Berkeley National Laboratory (Berkeley Lab) biologist Steve Singer leads a group that wants to find out. They’re exploring whether a common soil bacterium can be engineered to produce liquid transportation fuels much more efficiently than the ways in which advanced biofuels are made today.

The scientists are working with a bacterium called Ralstonia eutropha. It naturally uses hydrogen as an energy source to convert CO2 into various organic compounds. (more…)

Read More

Molecular Spectroscopy Tracks Living Mammalian Cells in Real Time as They Differentiate

Berkeley Lab scientists demonstrate the promise of synchrotron infrared spectroscopy of living cells for medical applications

Knowing how a living cell works means knowing how the chemistry inside the cell changes as the functions of the cell change. Protein phosphorylation, for example, controls everything from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death (apoptosis), in cells from bacteria to humans. It’s a chemical process that has long been intensively studied, not least in hopes of treating or eliminating a wide range of diseases. But until now the close-up view – watching phosphorylation work at the molecular level as individual cells change over time – has been impossible without damaging the cells or interfering with the very processes that are being examined.

“To look into phosphorylation, researchers have labeled specific phosphorylated proteins with antibodies that carry fluorescent dyes,” says Hoi-Ying Holman of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). “That gives you a great image, but you have to know exactly what to label before you can even begin.” (more…)

Read More

Golden Potential for Gold Thin Films

Berkeley Lab Researchers Direct the Self-Assembly of Gold Nanoparticles into Device-Ready Thin films

Scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have directed the first self-assembly of nanoparticles into device-ready materials. Through a relatively easy and inexpensive technique based on blending nanoparticles with block co-polymer supramolecules, the researchers produced multiple-layers of thin films from highly ordered one-, two- and three-dimensional arrays of gold nanoparticles. Thin films such as these have potential applications for a wide range of fields, including computer memory storage, energy harvesting, energy storage, remote-sensing, catalysis, light management and the emerging new field of plasmonics.

“We’ve demonstrated a simple yet versatile supramolecular approach to control the 3-D spatial organization of nanoparticles with single particle precision over macroscopic distances in thin films,” says polymer scientist Ting Xu, who led this research. “While the thin gold films we made were wafer-sized, the technique can easily produce much larger films, and it can be used on nanoparticles of many other materials besides gold.” (more…)

Read More

First Atomic-Scale Real-Time Movies of Platinum Nanocrystal Growth in Liquids

Berkeley Scientists Create Graphene Liquid Cells for Electron Microscopy Studies of Nanocrystal Formation

They won’t be coming soon to a multiplex near you, but movies showing the growth of platinum nanocrystals at the atomic-scale in real-time have blockbuster potential. A team of scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley has developed a technique for encapsulating liquids of nanocrystals between layers of graphene so that chemical reactions in the liquids can be imaged with an electron microscope. With this technique, movies can be made that provide unprecedented direct observations of physical, chemical and biological phenomena that take place in liquids on the nanometer scale. (more…)

Read More

Exciting New Field of Bioorthogonal Chemistry Owes a Debt to Curiosity-Driven Research from Previous Eras

*Carolyn Bertozzi’s Kavli Lecture Highlights Promise of Biorothogonal Chemistry and Its Links to Basic Research From the Past*

“Bioorthogonal chemistry is literally chemistry for life,” said Carolyn Bertozzi, an internationally acclaimed leader and founder of this emerging and highly promising field of science that could fundamentally change drug development and disease diagnostics. In delivering the Kavli Foundation Innovations in Chemistry Lecture at this year’s Spring Meeting of the American Chemical Society (ACS) in San Diego, Bertozzi described how her own ground-breaking research made use of experiments nearly a century ago by two German chemists whose work was driven primarily by scientific curiosity as opposed to the more problem-driven research of today.

Bertozzi is a senior faculty scientist with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the T.Z. and Irmgard Chu Distinguished Professor of Chemistry and Professor of Molecular and Cell Biology at the University of California (UC) Berkeley. She is also an investigator with the Howard Hughes Medical Institute (HHMI). The Kavli Foundation is a philanthropic organization that supports basic scientific research. Its ACS lectures are designed to address “the urgent need for vigorous, outside the box thinking by scientists.” (more…)

Read More

Clocking an Accelerating Universe: First Results from BOSS

Berkeley Lab scientists are the leaders of BOSS, the Baryon Oscillation Spectroscopic Survey. They and their colleagues in the third Sloan Digital Sky Survey have announced the most precise measurements ever made of the era when dark energy turned on.

Some six billion light years distant, almost halfway from now back to the big bang, the universe was undergoing an elemental change. Held back until then by the mutual gravitational attraction of all the matter it contained, the universe had been expanding ever more slowly. Then, as matter spread out and its density decreased, dark energy took over and expansion began to accelerate.

Today BOSS, the Baryon Oscillation Spectroscopic Survey, the largest component of the third Sloan Digital Sky Survey (SDSS-III), announced the most accurate measurement yet of the distance scale of the universe during the era when dark energy turned on. (more…)

Read More