Tag Archives: berkeley lab

Another Advance on the Road to Spintronics

Berkeley Lab Researchers Unlock Ferromagnetic Secrets of Promising Materials

Spintronic technology, in which data is processed on the basis of electron “spin” rather than charge, promises to revolutionize the computing industry with smaller, faster and more energy efficient data storage and processing. Materials drawing a lot of attention for spintronic applications are dilute magnetic semiconductors – normal semiconductors to which a small amount of magnetic atoms is added to make them ferromagnetic. Understanding the source of ferromagnetism in dilute magnetic semiconductors has been a major road-block impeding their further development and use in spintronics. Now a significant step to removing this road-block has been taken.

A multi-institutional collaboration of researchers led by scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), using a new technique called HARPES, for Hard x-ray Angle-Resolved PhotoEmission Spectroscopy, has investigated the bulk electronic structure of the prototypical dilute magnetic semiconductor gallium manganese arsenide. Their findings show that the material’s ferromagnetism arises from both of the two different mechanisms that have been proposed to explain it. (more…)

Read More

New Insights into How Genetic Differences among Individuals Influence Breast Cancer Risk from Low-Dose Radiation

Berkeley Lab research could lead to new ways to ID women who have higher risk of breast cancer from low-dose radiation

Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have identified tissue mechanisms that may influence a woman’s susceptibility or resistance to breast cancer after exposure to low-dose ionizing radiation, such as the levels used in full-body CT scans and radiotherapy.

The research could lead to new ways to identify women who have higher or lower risks of breast cancer from low-dose radiation. Such a predictive tool could help guide the treatment of cancer patients who may be better served by non-radiation therapies. (more…)

Read More

The Best of Both Catalytic Worlds

Berkeley Lab Researchers Develop New Technique for Heterogenizing Homogenous Nano Catalysts

Catalysts are substances that speed up the rates of chemical reactions without themselves being chemically changed. Industrial catalysts come in two main types – heterogeneous, in which the catalyst is in a different phase from the reactants; and homogeneous, in which catalyst and the reactants are in the same phase. Heterogeneous catalysts are valued for their sustainability because they can be recycled. Homogeneous catalysts are valued for their product selectivity as their properties can be easily tuned through relatively simple chemistry.

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have combined the best properties of both types of industrial catalysts by encapsulating nanoclusters of a metallic heterogeneous catalyst within the branched arms of the molecules known as dendrimers. (more…)

Read More

Latest JBEI Startup to Speed Up Biotech Industry

TeselaGen’s DNA construction technology makes genetic engineering cheaper and faster.

Sequencing, splicing and expressing DNA may seem to be the quintessence of cutting-edge science—indeed DNA manipulation has revolutionized fields such as biofuels, chemicals and medicine. But in fact, the actual process can still be tedious and labor-intensive, something Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Nathan Hillson learned the hard way.

After struggling for two days to design a protocol to put together a genetic circuit with 10 pieces of DNA—using a spreadsheet as his primary tool—he was dismayed to discover that an outside company could have done the whole thing, including parts and labor, for lower cost than him ordering the oligonucleotides himself. “I learned two things: one, I never wanted to go through that process again, and two, it’s extremely important to do the cost-effectiveness calculation,” said Hillson, a biochemist who also directs the synthetic biology program at the Berkeley Lab-led Joint BioEnergy Institute (JBEI). “So that was the genesis of the j5 software. This is the perfect thing to teach a computer to do.” (more…)

Read More

A Clock that Will Last Forever

Berkeley Lab Researchers Propose a Way to Build the First Space-Time Crystal

Imagine a clock that will keep perfect time forever, even after the heat-death of the universe. This is the “wow” factor behind a device known as a “space-time crystal,” a four-dimensional crystal that has periodic structure in time as well as space. However, there are also practical and important scientific reasons for constructing a space-time crystal. With such a 4D crystal, scientists would have a new and more effective means by which to study how complex physical properties and behaviors emerge from the collective interactions of large numbers of individual particles, the so-called many-body problem of physics. A space-time crystal could also be used to study phenomena in the quantum world, such as entanglement, in which an action on one particle impacts another particle even if the two particles are separated by vast distances.

A space-time crystal, however, has only existed as a concept in the minds of theoretical scientists with no serious idea as to how to actually build one – until now. An international team of scientists led by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has proposed the experimental design of a space-time crystal based on an electric-field ion trap and the Coulomb repulsion of particles that carry the same electrical charge. (more…)

Read More

Berkeley Lab Scientists Create First 3-D Model of a Protein Critical to Embryo Development

The first detailed and complete picture of a protein complex that is tied to human birth defects as well as the progression of many forms of cancer has been obtained by an international team of researchers led by scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). Knowing the architecture of this protein,  PRC2, for Polycomb Repressive Complex 2, should be a boon to its future use in the development of new and improved therapeutic drugs.

“We present a complete molecular organization of human PRC2 that offers an invaluable structural context for understanding all of the previous biochemical and functional data that has been collected on this complex,” says Berkeley Lab biophysicist Eva Nogales, an electron microscopy expert who led this research. “Our model should also be an invaluable tool for the design of new experiments aimed at asking detailed questions about the mechanisms that enable PRC2 to function and how those mechanisms might be exploited.” (more…)

Read More

Salt Seeds Clouds in the Amazon Rainforest

It’s morning, deep in the Amazon jungle. In the still air innumerable leaves glisten with moisture, and fog drifts through the trees. As the sun rises, clouds appear and float across the forest canopy … but where do they come from? Water vapor needs soluble particles to condense on. Airborne particles are the seeds of liquid droplets in fog, mist, and clouds.

To learn how aerosol particles form in the Amazon, Mary Gilles of the Chemical Sciences Division at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and David Kilcoyne of the Lab’s Advanced Light Source (ALS) worked with Christopher Pöhlker of Germany’s Max Planck Institute for Chemistry (MPIC) as part of an international team of scientists led by MPIC’s Meinrat Andreae and Ulrich Pöschl. They analyzed samples of naturally formed aerosols collected above the forest floor, deep in the rainforest. (more…)

Read More

Forcing the Molecular Bond Issue

New and Improved Model of Molecular Bonding from Researchers at Berkeley Lab’s Molecular Foundry

Material properties and interactions are largely determined by the binding and unbinding of their constituent molecules, but the standard model used to interpret data on the formation and rupturing of molecular bonds suffers from inconsistencies. A collaboration of researchers led by a scientist at the U.S Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a first-of-its-kind model for providing a comprehensive description of the way in which molecular bonds form and rupture. This model enables researchers to predict the “binding free energy” of a given molecular system, which is key to predicting how that molecule will interact with other molecules.

“Molecular binding and unbinding events are much simpler than we have been led to believe from the standard model over the past decade,” says Jim DeYoreo, a scientist with the Molecular Foundry, a DOE nanoscience center at Berkeley Lab who was one of the leaders of this research. “With our new model, we now have a clear means for measuring one of the most important parameters governing how materials and molecules bind together.” (more…)

Read More