Tag Archives: organic matter

New Research Shows Elevated Mercury from in-Ground Wastewater Disposal

As towns across Cape Cod struggle with problems stemming from septic systems, a recent study by a Woods Hole Oceanographic Institution (WHOI) scientist focuses on one specific toxic by-product: mercury. In a study of local groundwater, biogeochemist Carl Lamborg found microbial action on wastewater transforms it into more mobile, more toxic forms of the element.

His findings were published in Environmental Science and Technology in November 2013. (more…)

Read More

Mercury levels in Pacific fish likely to rise in coming decades

ANN ARBOR — University of Michigan researchers and their University of Hawaii colleagues say they’ve solved the longstanding mystery of how mercury gets into open-ocean fish, and their findings suggest that levels of the toxin in Pacific Ocean fish will likely rise in coming decades.

Using isotopic measurement techniques developed at U-M, the researchers determined that up to 80 percent of the toxic form of mercury, called methylmercury, found in the tissues of deep-feeding North Pacific Ocean fish is produced deep in the ocean, most likely by bacteria clinging to sinking bits of organic matter. (more…)

Read More

Ancient Fossilized Sea Creatures Yield Oldest Biomolecules Isolated Directly from a Fossil

COLUMBUS, Ohio — Though scientists have long believed that complex organic molecules couldn’t survive fossilization, some 350-million-year-old remains of aquatic sea creatures uncovered in Ohio, Indiana, and Iowa have challenged that assumption.

The spindly animals with feathery arms—called crinoids, but better known today by the plant-like name “sea lily”—appear to have been buried alive in storms during the Carboniferous Period, when North America was covered with vast inland seas. Buried quickly and isolated from the water above by layers of fine-grained sediment, their porous skeletons gradually filled with minerals, but some of the pores containing organic molecules were sealed intact. (more…)

Read More

Not-So-Permanent Permafrost

MENLO PARK, Calif. — As much as 44 billion tons of nitrogen and 850 billion tons of carbon stored in arctic permafrost, or frozen ground, could be released into the environment as the region begins to thaw over the next century as a result of a warmer planet according to a new study led by the U.S. Geological Survey. This nitrogen and carbon are likely to impact ecosystems, the atmosphere, and water resources including rivers and lakes. For context, this is roughly the amount of carbon stored in the atmosphere today.

The release of carbon and nitrogen in permafrost could exacerbate the warming phenomenon and will impact water systems on land and offshore according to USGS scientists and their domestic and international collaborators. The previously unpublished nitrogen figure is useful for scientists who are making climate predictions with computer climate models, while the carbon estimate is consistent and gives more credence to other scientific studies with similar carbon estimates. (more…)

Read More

Measuring the “Other” Greenhouse Gases: Higher Than Expected Levels of Methane in California

Berkeley Lab scientists develop new method for evaluating short-lived pollutants.

New research from Lawrence Berkeley National Laboratory (Berkeley Lab) has found that levels of methane—a potent greenhouse gas emitted from many man-made sources, such as coal mines, landfills and livestock ranches—are at least one-and-a-half times higher in California than previously estimated.

Working with scientists from the National Oceanic and Atmospheric Administration (NOAA) Berkeley Lab scientists Marc L. Fischer and Seongeun Jeong combined highly accurate methane measurements from a tower with model predictions of expected methane signals to revise estimated methane emissions from central California. They found that annually averaged methane emissions in California were 1.5 to 1.8 times greater than previous estimates, depending on the spatial distribution of the methane emissions. (more…)

Read More

UA Researchers Hunt Bomb-Eating Bugs

UA researchers are investigating bacterial eating habits as part of a $1 million study to determine the environmental fate of newly developed munitions.

University of Arizona researchers are studying the environmental effects of insensitive munitions compounds, or IMCs, which are new, more stable explosives that won’t detonate in response to heat or shock.

Not much is known about the environmental impact of IMCs, which the U.S. Department of Defense hopes will reduce injuries and fatalities among troops who handle explosives. (more…)

Read More

Sediment Chemicals in Coastal Rivers Overall Lower in U.S. than Worldwide Averages

Almost all the sediment-associated chemical concentrations found in 131 of the nation’s rivers that drain to the Atlantic, Pacific and Gulf Coasts are lower than worldwide averages, according to a new study by the USGS. These coastal rivers are a significant pathway for the delivery of sediment-associated chemicals to the world’s coastal zones and oceans.

“I hope that the results of this new study will remind everyone that it is not only river water that can transport chemicals and pollutants, but also the associated sediment load,” said USGS Director Marcia McNutt. “Our citizens expect high environmental quality as compared with worldwide averages, but clean water alone will not suffice if river sediments are host to toxic heavy metals and concentrated organics that can produce dead zones.” (more…)

Read More

Thawing Permafrost 50 Million Years Ago Led To Warm Global Events, Says New Study

A new study led by the University of Massachusetts Amherst and involving the University of Colorado Boulder proposes a simple new mechanism to explain the source of carbon that fed a series of extreme warming events on Earth about 50 million years ago called the Paleocene-Eocene Thermal Maximum, or PETM, as well as a sequence of similar, smaller warming events afterward.

“The standard hypothesis has been that the source of carbon was in the ocean in the form of frozen methane gas in ocean-floor sediments,” said lead study author Rob DeConto of the University of Massachusetts Amherst. “We are instead ascribing the carbon source to the continents in polar latitudes where permafrost can store massive amounts of carbon that can be released as CO2 when the permafrost thaws.” (more…)

Read More