Tag Archives: plume

Study Provides Some Answers to Fate of Deepwater Horizon Oil

Nearly five years after the Deepwater Horizon explosion led to the release of roughly 200 million gallons of oil into the Gulf of Mexico, scientists are still working to answer the question: Where did all the oil go?

During the 2010 crisis, some of the oil gushing from the seafloor appeared as slicks on the sea surface, while roughly half of it, scientists estimate, remained trapped in deep ocean plumes of mixed oil and gas, one of which was more than a mile wide, hundreds of feet high and extended for miles southwest of the broken riser pipe at the damaged Macondo well. Many natural processes—like evaporation and biodegradation—and human actions—like the use of dispersants and flaring of gas at the surface—impacted the chemical makeup and fate of the oil, adding to the complexity of accounting for it.  (more…)

Read More

New Research Shows Elevated Mercury from in-Ground Wastewater Disposal

As towns across Cape Cod struggle with problems stemming from septic systems, a recent study by a Woods Hole Oceanographic Institution (WHOI) scientist focuses on one specific toxic by-product: mercury. In a study of local groundwater, biogeochemist Carl Lamborg found microbial action on wastewater transforms it into more mobile, more toxic forms of the element.

His findings were published in Environmental Science and Technology in November 2013. (more…)

Read More

Book explains astrobiology for a general audience

In the late 1990s, the University of Washington created what was arguably the world’s first graduate program in astrobiology, aimed at preparing scientists to hunt for life away from Earth. In 2001, David Catling became one of the first people brought to the UW specifically to teach astrobiology.

Catling, a UW professor of Earth and space sciences, is the author of Astrobiology: A Very Short Introduction, the 370th offering in the Oxford University Press series of “very short introduction” books by experts in various fields. Catling was commissioned by editors to write the book, which was published in the United States on Jan. 1. Following are his answers to some questions about the book and astrobiology. (more…)

Read More

12-Mile-High Martian Dust Devil Caught in Act

A Martian dust devil roughly 12 miles high (20 kilometers) was captured whirling its way along the Amazonis Planitia region of Northern Mars on March 14. It was imaged by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. Despite its height, the plume is little more than three-quarters of a football field wide (70 yards, or 70 meters).

Dust devils occur on Earth as well as on Mars. They are spinning columns of air, made visible by the dust they pull off the ground. Unlike a tornado, a dust devil typically forms on a clear day when the ground is heated by the sun, warming the air just above the ground. As heated air near the surface rises quickly through a small pocket of cooler air above it, the air may begin to rotate, if conditions are just right. (more…)

Read More

WHOI Scientists Analyze, Explain the Chemical Makeup of Gulf Plume

Taking another major step in sleuthing the 2010 Deepwater Horizon oil spill, a research team led by the Woods Hole Oceanographic Institution (WHOI) has determined what chemicals were contained in a deep, hydrocarbon-containing plume at least 22 miles long that WHOI scientists mapped and sampled last summer in the Gulf of Mexico, a residue of the Deepwater Horizon oil spill. Moreover, they have taken a big step in explaining why some chemicals, but not others, made their way into the plume.

The findings, published this week in the online edition of the Proceedings of the National Academy of Sciences, “help explain and shed light on the plume formation and verify much of what we thought about the plume’s composition,” said WHOI chemist Christopher Reddy, lead author of the study. The data “provide compelling evidence” that the oil component of the plume sampled in June 2010 essentially comprised benzene, toluene, ethybenzene, and total xylenes—together, called BTEX—at concentrations of about 70 micrograms per liter, the researchers reported. (more…)

Read More

Yellowstone’s Electrical Conductivity Hints Volcano Plume is Bigger Than Thought

WASHINGTON — Geophysicists have made the first large-scale picture of the electrical conductivity of the gigantic underground plume of hot and partly molten rock that feeds the Yellowstone supervolcano. The image suggests that the plume beneath the volcanically active area—renowned today for geysers and hot springs—is even bigger than it appears in earlier images made with earthquake waves. 

“It’s like comparing ultrasound and MRI in the human body; they are different imaging technologies,” says geophysics Professor Michael Zhdanov of the University of Utah in Salt Lake City. Zhdanov is  principal author of the new study and an expert on measuring magnetic and electrical fields on Earth’s surface to find oil, gas, minerals and geologic structures underground. (more…)

Read More

Sharks Sniff out Their Prey, One Nostril at a Time

It turns out the old saying is right — the nose really does know. And when it comes to sharks, the nostrils are particularly discriminating.  

Combined with the ability to detect underwater vibrations, sharks are able to zero in on the location of their prey by smelling in stereo, according to a new study by researchers at the University of South Florida (USF) and Woods Hole Oceanographic Institution (WHOI).

(more…)

Read More