Tag Archives: macondo well

Study Provides Some Answers to Fate of Deepwater Horizon Oil

Nearly five years after the Deepwater Horizon explosion led to the release of roughly 200 million gallons of oil into the Gulf of Mexico, scientists are still working to answer the question: Where did all the oil go?

During the 2010 crisis, some of the oil gushing from the seafloor appeared as slicks on the sea surface, while roughly half of it, scientists estimate, remained trapped in deep ocean plumes of mixed oil and gas, one of which was more than a mile wide, hundreds of feet high and extended for miles southwest of the broken riser pipe at the damaged Macondo well. Many natural processes—like evaporation and biodegradation—and human actions—like the use of dispersants and flaring of gas at the surface—impacted the chemical makeup and fate of the oil, adding to the complexity of accounting for it.  (more…)

Read More

Study Identifies Deepwater Horizon Debris as Likely Source of Gulf of Mexico Oil Sheens

A chemical analysis of oil sheens found floating recently at the ocean’s surface near the site of the Deepwater Horizon disaster indicates that the source is pockets of oil trapped within the wreckage of the sunken rig. Both the Macondo well and natural oil seeps common to the Gulf of Mexico were confidently ruled out.

Researchers from Woods Hole Oceanographic Institution (WHOI) and the University of California, Santa Barbara (UCSB) used a recently-patented method to fingerprint the chemical makeup of the sheens and to estimate the location of the source based on the extent to which gasoline-like compounds evaporated from the oil sheens. The study was published online in Environmental Science & Technology. (more…)

Read More

Mysterious Flotsam in Gulf of Mexico Came from Deepwater Horizon Rig, Study Finds

*Tracking Debris from Damaged Oil Rigs Could Help Forecast Coastal Impacts in the Future*

Shortly after the Deepwater Horizon disaster, mysterious honeycomb material was found floating in the Gulf of Mexico and along coastal beaches. Using state-of-the-art chemical forensics and a bit of old-fashioned detective work, a research team led by scientists at Woods Hole Oceanographic Institution (WHOI) confirmed that the flotsam were pieces of material used to maintain buoyancy of the pipe bringing up oil from the seafloor.

The researchers also affirmed that tracking debris from damaged offshore oil rigs could help forecast coastal pollution impacts in future oil spills and guide emergency response efforts—much the way the Coast Guard has studied the speed and direction of various floating debris to guide search and rescue missions. The findings were published Jan. 19 in Environmental Research Letters. (more…)

Read More

Four WHOI Scientists Contribute to Comprehensive Picture of the Fate of Oil from Deepwater Horizon Spill

A new study provides a composite picture of the environmental distribution of oil and gas from the 2010 Deepwater Horizon spill in the Gulf of Mexico. It amasses a vast collection of available atmospheric, surface and subsurface chemical data to assemble a “mass balance” of how much oil and gas was released, where it went and the chemical makeup of the compounds that remained in the air, on the surface, and in the deep water.

The study, “Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution,” is published online in the journal Proceedings of the National Academy of Sciences USA. (more…)

Read More

WHOI-Led Study Sharpens Picture of How Much Oil and Gas Flowed in Deepwater Horizon Spill

In a detailed assessment of the Deepwater Horizon oil spill, researchers led by a team from the Woods Hole Oceanographic Institution (WHOI) have determined that the blown-out Macondo well spewed oil at a rate of about 57,000 barrels a day, totaling nearly 5 million barrels of oil released from the well between April 20 and July 15, 2010, when the leak was capped. In addition, the well released some 100 million standard cubic feet per day of natural gas. (more…)

Read More

WHOI Study Reports Microbes Consumed Oil in Gulf Slick at Unexpected Rates

More than a year after the largest oil spill in history, perhaps the dominant lingering question about the Deepwater Horizon spill is, “What happened to the oil?” Now, in the first published study to explain the role of microbes in breaking down the oil slick on the surface of the Gulf of Mexico, Woods Hole Oceanographic Institution (WHOI) researchers have come up with answers that represent both surprisingly good news and a head-scratching mystery.

In research scheduled to be published in the Aug. 2 online edition of Environmental Research Letters, the WHOI team studied samples from the surface oil slick and surrounding Gulf waters. They found that bacterial microbes inside the slick degraded the oil at a rate five times faster than microbes outside the slick—accounting in large part for the disappearance of the slick some three weeks after Deepwater Horizon’s Macondo well was shut off. (more…)

Read More

WHOI Scientists Analyze, Explain the Chemical Makeup of Gulf Plume

Taking another major step in sleuthing the 2010 Deepwater Horizon oil spill, a research team led by the Woods Hole Oceanographic Institution (WHOI) has determined what chemicals were contained in a deep, hydrocarbon-containing plume at least 22 miles long that WHOI scientists mapped and sampled last summer in the Gulf of Mexico, a residue of the Deepwater Horizon oil spill. Moreover, they have taken a big step in explaining why some chemicals, but not others, made their way into the plume.

The findings, published this week in the online edition of the Proceedings of the National Academy of Sciences, “help explain and shed light on the plume formation and verify much of what we thought about the plume’s composition,” said WHOI chemist Christopher Reddy, lead author of the study. The data “provide compelling evidence” that the oil component of the plume sampled in June 2010 essentially comprised benzene, toluene, ethybenzene, and total xylenes—together, called BTEX—at concentrations of about 70 micrograms per liter, the researchers reported. (more…)

Read More