Eleven regions of the human genome have been newly discovered to influence the onset of Alzheimer’s disease. The findings stem from the largest international study ever conducted on this disorder, which causes gradual memory loss and other forms of cognitive decline in older people.
As of 2009, 10 genes were known to be related to Alzheimer’s, the result of about a quarter-century of research. Yet the reasons behind individual susceptibility or resistance to the disease continued to be poorly understood. In February of 2011, four international research groups studying Alzheimer’s disease genetics united to more quickly identify other genes related to the disorder. (more…)
A class of molecules called microRNAs may offer cancer patients two ways to combat their disease.
Researchers at Princeton University have found that microRNAs — small bits of genetic material capable of repressing the expression of certain genes — may serve as both therapeutic targets and predictors of metastasis, or a cancer’s spread from its initial site to other parts of the body. The research was published in the journal Cancer Cell. (more…)
Local chemical signals released by fat cells in the mammary gland appear to provide a crucial link between exposure to unrelenting social stressors early in life, and the subsequent development of breast cancer, researchers from the University of Chicago report in the July 2013 issue of the journal Cancer Prevention Research.
Some forms of stress exposure may be associated with an increased risk of certain types of aggressive breast cancer. But the mechanisms linking the biology of social stress to cancer have been hard to identify. To unravel that mechanism, the researchers looked for differences between mice raised in small groups and those that grow up in an isolated setting—an established model of chronic stress without social supports. (more…)
COLUMBUS, Ohio – Scientists have delved deeper into the evolutionary history of the fruit fly than ever before to reveal the genetic activity that led to the development of wings – a key to the insect’s ability to survive.
The wings themselves are common research models for this and other species’ appendages. But until now, scientists did not know how the fruit fly, Drosophila melanogaster, first sprouted tiny buds that became flat wings. (more…)
For the past few decades, health officials have been reporting increases in the incidence of autoimmune diseases such as multiple sclerosis (MS). Now researchers at Yale Medical School, Harvard Medical School and the Broad Institute have identified a prime suspect in the mystery — dietary salt.
In the March 6 issue of the journal Nature, Yale researchers showed that salt can induce and worsen pathogenic immune system responses in mice and that the response is regulated by genes already implicated in a variety of autoimmune diseases. (more…)
Fat worms confirm that researchers from Michigan State University have successfully engineered a plant with oily leaves – a feat that could enhance biofuel production as well as lead to improved animal feeds.
The results, published in the current issue of The Plant Cell, the journal of the American Society of Plant Biologists, show that researchers could use an algae gene involved in oil production to engineer a plant that stores lipids or vegetable oil in its leaves – an uncommon occurrence for most plants. (more…)
ANN ARBOR — Scientists have known for nearly a century that cold-blooded animals, such as worms, flies and fish all live longer in cold environments, but have not known exactly why.
Researchers at the University of Michigan Life Sciences Institute have identified a genetic program that promotes longevity of roundworms in cold environments—and this genetic program also exists in warm-blooded animals, including humans. (more…)
Researchers with Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have provided important new details into the activation of the epidermal growth factor receptor (EGFR), a cell surface protein that has been strongly linked to a large number of cancers and is a major target of cancer therapies.
“The more we understand about EGFR and the complex molecular machinery involved in the growth and proliferation of cells, the closer we will be to developing new and more effective ways to cure and treat the many different forms of cancer,” says chemist Jay Groves, one of the leaders of this research. “Through a tour-de-force of quantitative biology techniques that included cutting edge time-resolved fluorescence spectroscopy in living cells, Nuclear Magnetic Resonance, and computational modeling, we’ve determined definitively how EGFR becomes activated through to its epidermal growth factor (EGF) ligand.” (more…)