Tag Archives: brain

Five-Limbed Brittle Stars Move Bilaterally, Like People

Brittle stars and people have something in common: They move in fundamentally similar ways. Though not bilaterally symmetrical like humans and many other animals, brittle stars have come up with a mechanism to choose any of its five limbs to direct its movement on the seabed. It’s as if each arm can be the creature’s front, capable of locomotion and charting direction. Results appear in the Journal of Experimental Biology.

PROVIDENCE, R.I. [Brown University] — It appears that the brittle star, the humble, five-limbed dragnet of the seabed, moves very similarly to us.

In a series of first-time experiments, Brown University evolutionary biologist Henry Astley discovered that brittle stars, despite having no brain, move in a very coordinated fashion, choosing a central arm to chart direction and then designating other limbs to propel it along. Yet when the brittle star wants to change direction, it designates a new front, meaning that it chooses a new center arm and two other limbs to move. Brittle stars have come up with a mechanism to choose any of its five limbs to be central control, each capable of determining direction or pitching in to help it move. (more…)

Read More

Photoreceptor Transplant Restores Vision in Mice

Scientists from the UCL Institute of Ophthalmology have shown for the first time that transplanting light-sensitive photoreceptors into the eyes of visually impaired mice can restore their vision.

The research, published in Nature, suggests that transplanting photoreceptors – light-sensitive nerve cells that line the back of the eye – could form the basis of a new treatment to restore sight in people with degenerative eye diseases. (more…)

Read More

Loss of Appetite Deciphered in Brain Cell Circuit

The meal is pushed way, untouched. Loss of appetite can be a fleeting queasiness or continue to the point of emaciation. While it’s felt in the gut, more is going on inside the head.

New findings are emerging about brain and body messaging pathways that lead to loss of appetite, and the systems in place to avoid starvation. (more…)

Read More

Insulin, Nutrition Prevent Blood Stem Cell Differentiation in The Fruit Fly

UCLA stem cell researchers have shown that insulin and nutrition prevent blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as blood stem cells are needed to create the blood supply for the adult fruit fly. (more…)

Read More

Scientists Pinpoint How Vitamin D May Help Clear Amyloid Plaques Found in Alzheimer’s

A team of academic researchers has identified the intracellular mechanisms regulated by vitamin D3 that may help the body clear the brain of amyloid beta, the main component of plaques associated with Alzheimer’s disease.

Published in the March 6 issue of the Journal of Alzheimer’s Disease, the early findings show that vitamin D3 may activate key genes and cellular signaling networks to help stimulate the immune system to clear the amyloid-beta protein. (more…)

Read More

A Bird’s Song May Teach Us About Human Speech Disorders

*UCLA scientists identify 2,000 important genes*

Can the song of a small bird provide valuable insights into human stuttering and speech-related disorders and conditions, including autism and stroke? New research by UCLA life scientists and colleagues provides reason for optimism.

The scientists discovered that some 2,000 genes in a region of the male zebra finch’s brain known as “Area X” are significantly linked to singing. More than 1,500 genes in this region, a critical part of the bird’s song circuitry, are being reported for the first time. Previously, a group of scientists including the UCLA team had identified some 400 genes in Area X. All the genes’ levels of expression change when the bird sings. (more…)

Read More

Study Shows How The Brain Responds To Deceptive Advertising

Several specific regions of our brains are activated in a two-part process when we are exposed to deceptive advertising, according to new research conducted by a North Carolina State University professor. The work opens the door to further research that could help us understand how brain injury and aging may affect our susceptibility to fraud or misleading marketing.

The study utilized functional magnetic resonance imaging (fMRI) to capture images of the brain while study participants were shown a series of print advertisements. The fMRI images allowed researchers to determine how consumers’ brains respond to potentially deceptive advertising. “We did not instruct participants to evaluate the ads. We wanted to mimic the passive exposure to advertising that we all experience every day,” says Dr. Stacy Wood, Langdon Distinguished Professor of Marketing at NC State and co-author of a paper describing the research. (more…)

Read More

UCLA Scientists Boost Memory By Stimulating Key Site in Brain

*Mechanism holds potential for improving recall in dementia patients*

Have you ever gone to the movies and forgotten where you parked the car? New UCLA research may one day help you improve your memory.

UCLA neuroscientists have demonstrated that they can strengthen memory in human patients by stimulating a critical junction in the brain. Published in the Feb. 9 edition of the New England Journal of Medicine, the finding could lead to a new method for boosting memory in patients with early Alzheimer’s disease. (more…)

Read More