Tag Archives: biology

Bright Future for Protein Nanoprobes

Berkeley Lab Researchers Discover New Rules for Single-Particle Imaging with Light-Emitting Nanocrystals

The term a “brighter future” might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered surprising new rules for creating ultra-bright light-emitting crystals that are less than 10 nanometers in diameter. These ultra-tiny but ultra-bright nanoprobes should be a big asset for biological imaging, especially deep-tissue optical imaging of neurons in the brain.

Working at the Molecular Foundry, a DOE national nanoscience center hosted at Berkeley Lab, a multidisciplinary team of researchers led by James Schuck and Bruce Cohen, both with Berkeley Lab’s Materials Sciences Division, used advanced single-particle characterization and theoretical modeling to study what are known as “upconverting nanoparticles” or UCNPs. Upconversion is the process by which a molecule absorbs two or more photons at a lower energy and emits them at higher energies. The research team determined that the rules governing the design of UCNP probes for ensembles of molecules do not apply to UCNP probes designed for single-molecules. (more…)

Read More

Origins and uses of wrinkles, creases, folds

New research into the origins of — and structural differences between — wrinkles, creases, and folds could have applications in many fields, from flexible electronic devices to dermatology to flexible sheets that become sticky when stretched. Findings from a Brown University research group appear in Proceedings of the Royal Society A.

PROVIDENCE, R.I. [Brown University] — Engineers from Brown University have mapped out the amounts of compression required to cause wrinkles, creases, and folds to form in rubbery materials. The findings could help engineers control the formation of these structures, which can be useful in designing nanostructured materials for flexible electronic devices or surfaces that require variable adhesion. (more…)

Read More

Tenfold boost in ability to pinpoint proteins in cancer cells

Better diagnosis and treatment of cancer could hinge on the ability to better understand a single cell at its molecular level. New research offers a more comprehensive way of analyzing one cell’s unique behavior, using an array of colors to show patterns that could indicate why a cell will or won’t become cancerous.

A University of Washington team has developed a new method for color-coding cells that allows them to illuminate 100 biomarkers, a ten-time increase from the current research standard, to help analyze individual cells from cultures or tissue biopsies. The work is published this week (March 19) in Nature Communications. (more…)

Read More

Mating Swarm Study Offers New Way to View Flocks, Schools, Crowds

The adulthood of a midge fly is decidedly brief — about three days. But a new study of its mating swarm may yield lasting benefits for analyses of bird flocks, fish schools, human crowds and other forms of collective animal motion.

“This is a field where there’s been almost no quantitative data,” said Nicholas T. Ouellette of the Yale School of Engineering & Applied Science, principal investigator of the research, published Jan. 15 in the journal Scientific Reports. “What we’ve been able to do is put this in the laboratory, and that lets us take as much data as we want.” (more…)

Read More

Space Life

NASA funds astrobiology research by Delaware Biotechnology Institute scientist

Does life exist anywhere else in the universe? That’s the type of broad but poignant question NASA likes to ask, according to Chandran Sabanayagam, associate scientist in the Bioimaging Center at the Delaware Biotechnology Institute (DBI). And he would know, because he’s preparing to help answer it.

NASA will receive $100 billion from the federal government over the next five years to assure America is number one in space exploration, according to Astrobiology.com. As part of its push to seek new partnerships and broaden its vision, NASA is offering grants to people conducting transformational science. With this opportunity, Sabanayagam is merging his love of physics and biology. (more…)

Read More

University of Toronto Study Demonstrates Impact of Adversity on Early Life Development

Study part of growing body of knowledge surrounding gene-environment interplay

TORONTO, ON – It is time to put the nature versus nurture debate to rest and embrace growing evidence that it is the interaction between biology and environment in early life that influences human development, according to a series of studies recently published in a special edition of the Proceedings of the National Academy of Sciences (PNAS).

“Biologists used to think that our differences are pre-programmed in our genes, while psychologists argued that babies are born with a blank slate and their experience writes on it to shape them into the adults they become. Instead, the important question to be asking is, ‘How is our experience in early life getting embedded in our biology?’” says University of Toronto behavioural geneticist Marla Sokolowski. She is co-editor of the PNAS special edition titled “Biological Embedding of Early Social Adversity: From Fruit Flies to Kindergarteners” along with professors Tom Boyce (University of British Columbia) and Gene Robinson (University of Illinois). (more…)

Read More

Latest JBEI Startup to Speed Up Biotech Industry

TeselaGen’s DNA construction technology makes genetic engineering cheaper and faster.

Sequencing, splicing and expressing DNA may seem to be the quintessence of cutting-edge science—indeed DNA manipulation has revolutionized fields such as biofuels, chemicals and medicine. But in fact, the actual process can still be tedious and labor-intensive, something Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Nathan Hillson learned the hard way.

After struggling for two days to design a protocol to put together a genetic circuit with 10 pieces of DNA—using a spreadsheet as his primary tool—he was dismayed to discover that an outside company could have done the whole thing, including parts and labor, for lower cost than him ordering the oligonucleotides himself. “I learned two things: one, I never wanted to go through that process again, and two, it’s extremely important to do the cost-effectiveness calculation,” said Hillson, a biochemist who also directs the synthetic biology program at the Berkeley Lab-led Joint BioEnergy Institute (JBEI). “So that was the genesis of the j5 software. This is the perfect thing to teach a computer to do.” (more…)

Read More

Rose McDermott: The Political Genome

A recent review of research co-authored by Rose McDermott highlights the role that genes play in political preferences, an area of study that began to draw significant attention in the last decade. McDermott speaks with Courtney Coelho about this growing field of research, its evolutionary roots, and whether it means anything for the prediction of future election results.

The connection between biology and political science is relatively new, but it’s one that has grown rapidly, with a boom in research linking genetics and political preferences in the last decade. Rose McDermott, professor of political science, has done research on this topic and recently co-authored a review, published in Trends in Genetics, of studies in recent years. (more…)

Read More