Tag Archives: mazen diab

Mathematical framework: How a wrinkle becomes a crease

Kyung-Suk Kim and Mazen Diab have worked out the mathematics of how wrinkles form in solid materials under compression — and how, under more compression, those wrinkles can become creases. The mathematics of wrinkles and creases could help in the design of flexible electronic circuits, artificial skin, and soft robotic grips and may help explain brain injuries due to compression.

PROVIDENCE, R.I. [Brown University] — Wrinkles, creases and folds are everywhere in nature, from the surface of human skin to the buckled crust of the Earth. They can also be useful structures for engineers. Wrinkles in thin films, for example, can help make durable circuit boards for flexible electronics. (more…)

Read More

Origins and uses of wrinkles, creases, folds

New research into the origins of — and structural differences between — wrinkles, creases, and folds could have applications in many fields, from flexible electronic devices to dermatology to flexible sheets that become sticky when stretched. Findings from a Brown University research group appear in Proceedings of the Royal Society A.

PROVIDENCE, R.I. [Brown University] — Engineers from Brown University have mapped out the amounts of compression required to cause wrinkles, creases, and folds to form in rubbery materials. The findings could help engineers control the formation of these structures, which can be useful in designing nanostructured materials for flexible electronic devices or surfaces that require variable adhesion. (more…)

Read More