AMHERST, Mass. – Molecular chaperones have emerged as exciting new potential drug targets, because scientists want to learn how to stop cancer cells, for example, from using chaperones to enable their uncontrolled growth. Now a team of biochemists at the University of Massachusetts Amherst led by Lila Gierasch have deciphered key steps in the mechanism of the Hsp70 molecular machine by “trapping” this chaperone in action, providing a dynamic snapshot of its mechanism.
She and colleagues describe this work in the current issue of Cell. Gierasch’s research on Hsp70 chaperones is supported by a long-running grant to her lab from NIH’s National Institute for General Medical Sciences. (more…)
Some arid lands in the American West degraded by military exercises that date back to General George Patton’s Word War II maneuvers in the Mojave Desert should get a boost from an innovative research project led by the University of Colorado Boulder.
Headed up by CU-Boulder Assistant Professor Nichole Barger, the research team is focused on developing methods to restore biological soil crusts — microbial communities primarily concentrated on soil surfaces critical to decreasing erosion and increasing water retention and soil fertility. Such biological soil crusts, known as “biocrusts,” can cover up to 70 percent of the ground in some arid ecosystems and are dominated by cyanobacteria, lichens, mosses, fungi and bacteria, she said. (more…)
COLUMBUS, Ohio – A South American butterfly flapped its wings, and caused a flurry of nanotechnology research to happen in Ohio.
Researchers here have taken a new look at butterfly wings and rice leaves, and learned things about their microscopic texture that could improve a variety of products.
For example, the researchers were able to clean up to 85 percent of dust off a coated plastic surface that mimicked the texture of a butterfly wing, compared to only 70 percent off a flat surface. (more…)
ANN ARBOR — Nisin, a common food preservative, may slow or stop squamous cell head and neck cancers, a University of Michigan study found.
What makes this particularly good news is that the Food and Drug Administration and the World Health Organization approved nisin as safe for human consumption decades ago, says Yvonne Kapila, the study’s principal investigator and professor at the University of Michigan School of Dentistry. (more…)
GAINESVILLE, Fla. — By analyzing the genes of bacteria, University of Florida researchers have moved a step closer to pinpointing how two brain disorders common in small-breed dogs occur.
The researchers found that the bacteria, known as Mycoplasma canis, invade dog’s cells and suppress their immune system responses. (more…)
With all of the information floating around regarding the bird flu epidemic it can be hard to discern what you should really be concerned about and what is nothing more than a rumor. Here are five myths regarding the bird flu that aren’t as factual as they first may seem:
Any ingestion of infected poultry can be deadly: If the poultry is cooked thoroughly enough, even if it was infected prior to cooking, then it can be safe to eat. The virus cannot live through the extreme heat required for cooking, and will die off. Just make sure to cook your poultry thoroughly before consuming it to err on the side of safety. (more…)
Professor and students study how microbial life changes along the river
The mercury is pushing 100, but professor Michael Sadowsky and two assistants leave the indoor coolness for the bank of the Mississippi River as it flows by the University of Minnesota Twin Cities campus.
The three men send a bucket splashing into the current and haul back a water sample. That doesn’t affect the river much, but information locked away in bacteria from the sample may tell them a great deal about how the river’s microbial communities change along its course through Minnesota and how human activity affects them.(more…)
Berkeley Lab and SLAC Researchers Study Key Protein Complex Crucial to Photosynthesis
Future prospects for clean, green, renewable energy may hinge upon our ability to mimic and improve upon photosynthesis – the process by which green plants, algae and some bacteria convert solar energy into electrochemical energy. An artificial version of photosynthesis, for example, could use sunlight to produce liquid fuels from nothing more than carbon dioxide and water. First, however, scientists need a better understanding of how a large complex of proteins, called photosystem II, is able to split water molecules into oxygen, electrons and hydrogen ions (protons). A new road to reaching this understanding has now been opened by an international team of researchers, led by scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and SLAC National Accelerator Laboratory.
Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the research team produced the first ever images at room temperature of microcrystals of the photosystem II complex. Previous imaging studies, using X-rays generated via synchrotron radiation sources, required cryogenic freezing, which alters the samples. Also, to catalyze its reactions, photosystem II relies upon an enzyme that contains a manganese-calcium cluster that is highly sensitive to radiation. With the high-intensity femtosecond X-ray pulses of the LCLS, the research team was able to record intact images of these clusters before the radiation destroyed them. (more…)