Tag Archives: chemotherapy

Gold Nanoparticle Prostate Cancer Treatment Found Safe in Dogs, MU Study Shows

New treatment may have fewer side effects than traditional cancer therapy

COLUMBIA, Mo. ­— Currently, large doses of chemotherapy are required when treating certain forms of cancer, resulting in toxic side effects. The chemicals enter the body and work to destroy or shrink the tumor, but also harm vital organs and drastically affect bodily functions. Now, scientists at the University of Missouri have proven that a new form of prostate cancer treatment that uses radioactive gold nanoparticles, and was developed at MU, is safe to use in dogs. Sandra Axiak-Bechtel, an assistant professor in oncology at the MU College of Veterinary Medicine, says that this is a big step for gold nanoparticle research.

“Proving that gold nanoparticles are safe to use in the treatment of prostate cancer in dogs is a big step toward gaining approval for clinical trials in men,” Axiak-Bechtel said. “Dogs develop prostate cancer naturally in a very similar way as humans, so the gold nanoparticle treatment has a great chance to translate well to human patients.” (more…)

Read More

Duplex-sequencing Method Could Lead to Better Cancer Detection and Treatment

During an ice climbing trip to the Canadian Rockies last Christmas, two young researchers from the University of Washington, Drs. Michael Schmitt and Jesse Salk, talked about a simple but powerful idea to get better results when looking at cancer cells. If they could reduce the error rate in DNA sequencing, then researchers could better pinpoint which cells are mutating.

This improvement could lead to early diagnosis of cancer and a better treatment plan once researchers knew which cells were resistant to chemotherapy. (more…)

Read More

Immune Systems of ‘Bubble Babies’ Restored by Gene Therapy, UCLA Researchers Find

UCLA stem cell researchers have found that a gene therapy regimen can safely restore immune systems to children with so-called “bubble boy” disease, a life-threatening condition that if left untreated can be fatal within one to two years.

In the 11-year study, researchers were able to test two therapy regimens for 10 children with ADA-deficient severe combined immunodeficiency (SCID), which has come to be known as “bubble boy” disease because some of its victims have been forced to live in sterile environments. (more…)

Read More

MU Research Team Creates New Cancer Drug that is 10 Times More Potent

Drug efficiently targets breast, lung and colon cancer; clinical trials could start within two years.

COLUMBIA, Mo. ­—  Legend has it that Ralph Waldo Emerson once said, “Build a better mousetrap, and the world will beat a path to your door.” University of Missouri researchers are doing just that, but instead of building mousetraps, the scientists are targeting cancer drugs. In a new study, MU medicinal chemists have taken an existing drug that is being developed for use in fighting certain types of cancer, added a special structure to it, and created a more potent, efficient weapon against cancer.

“Over the past decade, we have seen an increasing interest in using carboranes in drug design,” said Mark W. Lee Jr., assistant professor of chemistry in College of Arts and Science. “Carboranes are clusters of three elements — boron, carbon and hydrogen. Carboranes don’t fight cancer directly, but they aid in the ability of a drug to bind more tightly to its target, creating a more potent mechanism for destroying the cancer cells.” (more…)

Read More

Common Antifungal Drug Decreases Tumor Growth and Shows Promise as Cancer Therapy

AUSTIN, Texas — An inexpensive antifungal drug, thiabendazole, slows tumor growth and shows promise as a chemotherapy for cancer. Scientists in the College of Natural Sciences at The University of Texas at Austin made this discovery by exploiting the evolutionary relatedness of yeast, frogs, mice and humans.

Thiabendazole is an FDA-approved, generic drug taken orally that has been in clinical use for 40 years as an antifungal. It is not currently used for cancer therapy.

Hye Ji Cha, Edward Marcotte, John Wallingford and colleagues found that the drug destroys newly established blood vessels, making it a “vascular disrupting agent.” Their research was published in the journal PLoS Biology. (more…)

Read More

Gold Nanoparticles Could Treat Prostate Cancer With Fewer Side Effects than Chemotherapy, MU Researchers Find

In new study published in PNAS, scientists found that nanoparticles, produced from chemicals in tea, reduced tumors by 80 percent.

COLUMBIA, Mo. – Currently, large doses of chemotherapy are required when treating certain forms of cancer, resulting in toxic side effects. The chemicals enter the body and work to destroy or shrink the tumor, but also harm vital organs and drastically affect bodily functions. Now, University of Missouri scientists have found a more efficient way of targeting prostate tumors by using gold nanoparticles and a compound found in tea leaves. This new treatment would require doses that are thousands of times smaller than chemotherapy and do not travel through the body inflicting damage to healthy areas. The study is being published in the Proceedings of the National Academy of Science. (more…)

Read More

Study: Heart Damage after Chemo Linked to Stress in Cardiac Cells

COLUMBUS, Ohio – Blocking a protein in the heart that is produced under stressful conditions could be a strategy to prevent cardiac damage that results from chemotherapy, a new study suggests.

Previous research has suggested that up to a quarter of patients who receive the common chemotherapy drug doxorubicin are at risk of developing heart failure later in life. Exactly how that heart damage is done remains unclear.

In this study, scientists identified a protein called heat shock factor-1 (HSF-1) as a likely source of chemotherapy-related heart damage in mice and cell cultures. Heat shock factor-1 is known to be induced by stress – in this case, the chemotherapy treatment itself. (more…)

Read More

Radiation Generates Cancer Stem Cells From Less Aggressive Breast Cancer Cells

Breast cancer stem cells, thought to be the sole source of tumor recurrence, are known to be resistant to radiation therapy and don’t respond well to chemotherapy.

Now, researchers with the UCLA Department of Radiation Oncology at UCLA’s Jonsson Comprehensive Cancer Center report for the first time that radiation treatment, despite killing half of all tumor cells during every treatment, transforms other cancer cells into treatment-resistant breast cancer stem cells. (more…)

Read More