Tag Archives: DNA

UCLA Scientists Engineer Blood Stem Cells to Fight Melanoma

Researchers from UCLA’s cancer and stem cell centers have demonstrated for the first time that blood stem cells can be engineered to create cancer-killing T-cells that seek out and attack a human melanoma. The researchers believe the approach could be useful in about 40 percent of Caucasians with this malignancy.

Done in mouse models, the study serves as the first proof-of-principle that blood stem cells, which make every type of cell found in the blood, can be genetically altered in a living organism to create an army of melanoma-fighting T-cells, said Jerome Zack, the study’s senior author and a scientist with UCLA’s Jonsson Comprehensive Cancer Center and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. (more…)

Read More

Yale Researchers Find Genetic Link Between Heart Disease and Brain Aneurysms

Yale School of Medicine researchers have discovered that a variant of a gene linked to heart disease also increases the risk of deadly aneurysms of blood vessels in the brain. The discovery of this link raises hopes for new treatments for intracranial aneurysms, which affect more than a half million people worldwide annually.

“Existing drugs already target this common pathway and, in the future, could help treat or prevent aneurysms in people who are at risk,” said Murat Gunel, professor of neurosurgery, genetics and neurobiology and senior author of the study, published the week of Nov. 21 in the Proceedings of the National Academy of Sciences. (more…)

Read More

Scientists Identify Microbes Responsible for Consuming Natural Gas in Deepwater Horizon Spill

*Water temperature played key role*

In the results of a new study, scientists explain how they used DNA to identify microbes present in the Gulf of Mexico following the Deepwater Horizon oil spill–and the particular microbes responsible for consuming natural gas immediately after the spill.

Water temperature played a key role in the way bacteria reacted to the spill, the researchers found. (more…)

Read More

UCLA Study Shows Cell-Penetrating Peptides for Drug Delivery Act Like A Swiss Army Knife

Cell-penetrating peptides, such as the HIV TAT peptide, are able to enter cells using a number of mechanisms, from direct entry to endocytosis, a process by which cells internalize molecules by engulfing them.

Further, these cell-penetrating peptides, or CPPs, can facilitate the cellular transfer of various molecular cargoes, from small chemical molecules to nano-sized particles and large fragments of DNA. Because of this ability, CPPs hold great potential as in vitro and in vivo delivery vehicles for use in research and for the targeted delivery of therapeutics to individual cells. (more…)

Read More

Life Scientists Use Novel Technique to Produce Genetic Map for African Americans

UCLA life scientists and colleagues have produced one of the first high-resolution genetic maps for African American populations. A genetic map reveals the precise locations across the genome where DNA from a person’s father and mother have been stitched together through a biological process called “recombination.” This process results in new genetic combinations that are then passed on to the person’s children.

The new map will help disease geneticists working to map genetic diseases in African Americans because it provides a more accurate understanding of recombination rates among that population, said the senior author of the research, John Novembre, a UCLA assistant professor of ecology and evolutionary biology and of bioinformatics. The map could help scientists learn the roots of these diseases and discover genes that play a key role in them. (more…)

Read More

Getting a Tighter Grip on Cell Division

*Molecular “machine” responsible for pulling chromosome copies apart is isolated and seen in action outside the cell* 

The dance of cell division is carefully choreographed and has little room for error. Paired genetic information is lined up in the middle of the cell in the form of chromosomes. The chromosomes must then be carefully pulled apart so that the resulting daughter cells each have an identical copy of the mother cell’s DNA.  (more…)

Read More

UCLA Researchers Identify Molecular Program for Brain Repair Following Stroke

Mouse Stroke. An MRI of a mouse brain after stroke. The mouse section has been stained to show cell bodies. Image credit: University of California

A stroke wreaks havoc in the brain, destroying its cells and the connections between them. Depending on its severity and location, a stroke can impact someone’s life forever, affecting motor activity, speech, memories, and more. 

The brain makes an attempt to rally by itself, sprouting a few new connections, called axons, that reconnect some areas of the brain. But the process is weak, and the older the brain, the poorer the repair. Still, understanding the cascade of molecular events that drive even this weak attempt could lead to developing drugs to boost and accelerate this healing process. 

Now researchers at UCLA have achieved a promising first step. Reporting in the current online edition of the journal Nature Neuroscience, senior author Dr. S. Thomas Carmichael, a UCLA associate professor of neurology, and colleagues have, for the first time, identified in the mouse the molecular cascade that drives the process of reconnection or sprouting in the adult brain after stroke.  (more…)

Read More

New 3-D Model of RNA ‘Core Domain’ of Enzyme Telomerase May Offer Clues to Cancer, Aging

A model representation of telomerase's RNA "core domain," determined by Juli Feigon, Qi Zhang and colleagues in Feigon's UCLA laboratory. Image credit: Juli Feigon, UCLA Chemistry and Biochemistry/PNAS

Telomerase is an enzyme that maintains the DNA at the ends of our chromosomes, known as telomeres. In the absence of telomerase activity, every time our cells divide, our telomeres get shorter. This is part of the natural aging process, as most cells in the human body do not have much active telomerase. Eventually, these DNA-containing telomeres, which act as protective caps at the ends of chromosomes, become so short that the cells die.

 

But in some cells, such as cancer cells, telomerase, which is composed of RNA and proteins, is highly active and adds telomere DNA, preventing telomere shortening and extending the life of the cell. 

UCLA biochemists have now produced a three-dimensional structural model of the RNA “core domain” of the telomerase enzyme. Because telomerase plays a surprisingly important role in cancer and aging, understanding its structure could lead to new approaches for treating disease, the researchers say.  (more…)

Read More