Tag Archives: telomeres

The science of living better, longer

Did you ever wonder what science is doing to help us age more comfortably, in better health, doing the things we care about, for a longer span of time?

If so, have a look at the Yale YouTube channel, where the archived video of last week’s symposium exploring research on aging can be viewed. “Aging Research at Yale: Past Present and Future” brought together the director of the National Institute on Aging (NIA), the ranking Democrat on the House subcommittee that oversees the NIH budget, and a panel of Yale researchers whose work examines aging from the molecular level to that of populations. (more…)

Read More

UCLA scientist uncovers biological clock able to measure age of most human tissues

Study finds women’s breast tissue ages faster than the rest of the body

Everyone grows older, but scientists don’t really understand why. Now a UCLA study has uncovered a biological clock embedded in our genomes that may shed light on why our bodies age and how we can slow the process.

Published in the Oct. 21 edition of the journal Genome Biology, the findings could offer valuable insights to benefit cancer and stem cell research. (more…)

Read More

Omega-3 Supplements May Slow a Biological Effect of Aging

COLUMBUS, Ohio – Taking enough omega-3 fatty acid supplements to change the balance of oils in the diet could slow a key biological process linked to aging, new research suggests.

The study showed that most overweight but healthy middle-aged and older adults who took omega-3 supplements for four months altered a ratio of their fatty acid consumption in a way that helped preserve tiny segments of DNA in their white blood cells. (more…)

Read More

Offspring of Older Fathers May Live Longer

If your father and grandfather waited until they were older before having children, you might experience life-extending benefits. Biologists assume that a slow pace of aging requires that the body invest more resources in repairing cells and tissues.

A new study suggests that our bodies might increase these investments to slow the pace of aging if our father or grandfather waited until they were older before having children.

“If your father and grandfather were able to live and reproduce at a later age, this might predict that you yourself live in an environment that is somewhat similar — an environment with less accidental deaths or in which men are only able to find a partner at later ages,” said Dan T.A. Eisenberg, lead author of the study published June 11 in the Proceedings of the National Academy of Sciences. (more…)

Read More

Timely Ends: Telomere Length in Early Life Predicts Lifespan

New research by a team from the Universities of Glasgow and Exeter shows that a good indicator of how long individuals will live can be obtained from early in life using the length of specialised pieces of DNA called telomeres.

Telomeres occur at the ends of the chromosomes, which contain our genetic code.

They function a bit like the plastic caps at the end of shoelaces by marking the chromosome ends and protecting them from various process that gradually cause the ends to be worn away. This method of DNA protection is the same for most animals and plants, including humans, and the eventual loss of the telomere cap is known to cause cells to malfunction. This study is the first in which telomere length has been measured repeatedly from early in life of an individual and then for the rest of their natural lives. The results show that telomere length in early life is strongly predictive of lifespan. (more…)

Read More

Research Suggests HIV Causes Rapid Aging in Key Infection-fighting Cells

In the early years of the AIDS epidemic, being infected with the virus that causes the disease was considered a virtual death sentence. But with the development of antiretroviral therapy, many with HIV are now living much longer. In fact, it is estimated that by 2015, about half of all HIV-positive individuals will be older than 50. 

Yet those over 50 also progress to AIDS faster than adults in their 20s or 30s. And those in the younger age bracket — even those responding well to antiretroviral therapy — still exhibit illnesses and clinical conditions commonly associated with older people, such as certain cancers and liver diseases. For the most part, the reasons for this have remained a mystery.  (more…)

Read More

New 3-D Model of RNA ‘Core Domain’ of Enzyme Telomerase May Offer Clues to Cancer, Aging

A model representation of telomerase's RNA "core domain," determined by Juli Feigon, Qi Zhang and colleagues in Feigon's UCLA laboratory. Image credit: Juli Feigon, UCLA Chemistry and Biochemistry/PNAS

Telomerase is an enzyme that maintains the DNA at the ends of our chromosomes, known as telomeres. In the absence of telomerase activity, every time our cells divide, our telomeres get shorter. This is part of the natural aging process, as most cells in the human body do not have much active telomerase. Eventually, these DNA-containing telomeres, which act as protective caps at the ends of chromosomes, become so short that the cells die.

 

But in some cells, such as cancer cells, telomerase, which is composed of RNA and proteins, is highly active and adds telomere DNA, preventing telomere shortening and extending the life of the cell. 

UCLA biochemists have now produced a three-dimensional structural model of the RNA “core domain” of the telomerase enzyme. Because telomerase plays a surprisingly important role in cancer and aging, understanding its structure could lead to new approaches for treating disease, the researchers say.  (more…)

Read More