Tag Archives: Nanotechnology

New Twist on Ancient Math Problem Could Improve Medicine, Microelectronics

ANN ARBOR, Mich.— A hidden facet of a math problem that goes back to timeworn Sanskrit manuscripts has just been exposed by nanotechnology researchers at the University of Michigan and the University of Connecticut.

It turns out we’ve been missing a version of the famous “packing problem,” and its new guise could have implications for cancer treatment, secure wireless networks, microelectronics and demolitions, the researchers say.

Called the “filling problem,” it seeks the best way to cover the inside of an object with a particular shape, such as filling a triangle with discs of varying sizes. Unlike the traditional packing problem, the discs can overlap. It also differs from the “covering problem” because the discs can’t extend beyond the triangle’s boundaries. (more…)

Read More

Portable Diagnostics Designed To Be Shaken, Not Stirred

As medical researchers and engineers try to shrink diagnostics to fit in a person’s pocket, one question is how to easily move and mix small samples of liquid.

University of Washington researchers have built and patented a surface that, when shaken, moves drops along certain paths to conduct medical or environmental tests.

“This allows us to move drops as far as we want, and in any kind of layout that we want,” said Karl Böhringer, a UW professor of electrical engineering and bioengineering. The low-cost system, published in a recent issue of the journal Advanced Materials, would require very little energy and avoids possible contamination by diluting or electrifying the samples in order to move them. (more…)

Read More

‘Bed-of-Nails’ Breast Implant Deters Cancer Cells

Researchers at Brown University have created an implant that appears to deter breast cancer cell regrowth. Made from a common federally approved polymer, the implant is the first to be modified at the nanoscale in a way that causes a reduction in the blood-vessel architecture that breast cancer tumors depend upon, while also attracting healthy breast cells. Results are published in Nanotechnology.

PROVIDENCE, R.I. [Brown University] — One in eight women in the United States will develop breast cancer. Of those, many will undergo surgery to remove the tumor and will require some kind of breast reconstruction afterward, often involving implants. Cancer is an elusive target, though, and malignant cells return for as many as one-fifth of women originally diagnosed, according to the American Cancer Society. (more…)

Read More

Scholars Say Global Governance Overhaul Needed For Earth’s Sustainability

A group of the world’s leading environmental scholars are sounding the alarm that human societies need to transform their national and international environmental institutions into a more coherent and robust planetary stewardship model to steer away from rapid and irreversible changes to the Earth’s subsystems.

University of Toronto political scientist Steven Bernstein is one of the authors of a paper which appears in Science on March 16, 2012. (more…)

Read More

Correct Protein Folding:

*Berkeley Lab Researchers Identify Structure of Key Control Element Behind Protein Misfolding That Can Lead to Disease*

The gold standard for nanotechnology is nature’s own proteins. These biomolecular nanomachines – macromolecules forged from peptide chains of amino acids – are able to fold themselves into a dazzling multitude of shapes and forms that enable them to carry out an equally dazzling multitude of functions fundamental to life. As important as protein folding is to virtually all biological systems, the mechanisms behind this process have remained a mystery. The fog, however, is being lifted.

A team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), using the exceptionally bright and powerful x-ray beams of the Advanced Light Source, have determined the crystal structure of a critical control element within chaperonin, the protein complex responsible for the correct folding of other proteins. The incorrect or “misfolding” of proteins has been linked to many diseases, including Alzheimer’s, Parkinson’s and some forms of cancer. (more…)

Read More

Biochip Measures Glucose in Saliva, Not Blood

*Engineers at Brown University have designed a biological device that can measure glucose concentrations in human saliva. The technique could eliminate the need for diabetics to draw blood to check their glucose levels. The biochip uses plasmonic interferometers and could be used to measure a range of biological and environmental substances. Results are published in Nano Letters.*

PROVIDENCE, R.I. [Brown University] — For the 26 million Americans with diabetes, drawing blood is the most prevalent way to check glucose levels. It is invasive and at least minimally painful. Researchers at Brown University are working on a new sensor that can check blood sugar levels by measuring glucose concentrations in saliva instead.

The technique takes advantage of a convergence of nanotechnology and surface plasmonics, which explores the interaction of electrons and photons (light). The engineers at Brown etched thousands of plasmonic interferometers onto a fingernail-size biochip and measured the concentration of glucose molecules in water on the chip. Their results showed that the specially designed biochip could detect glucose levels similar to the levels found in human saliva. Glucose in human saliva is typically about 100 times less concentrated than in the blood. (more…)

Read More

UCLA Physicists Report Nanotechnology Feat With Proteins

UCLA physicists have made nanomechanical measurements of unprecedented resolution on protein molecules.

The new measurements, by UCLA physics professor Giovanni Zocchi and former UCLA physics graduate student Yong Wang, are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid.

“Proteins are the molecular machines of life, the molecules we are made of,” Zocchi said. “We have found that sometimes they behave as a solid and sometimes as a liquid. (more…)

Read More

Researcher Explains How Santa Delivers Presents in One Night

Don’t believe in Santa Claus? Magic, you say? In fact, science and technology explain how Santa is able to deliver toys to good girls and boys around the world in one night, according to a North Carolina State University researcher.

NC State’s Dr. Larry Silverberg, professor of mechanical and aerospace engineering, can explain the science and engineering principles that allow Santa, also known as Kris Kringle or Saint Nicholas, to pull off the magical feat year after year. (more…)

Read More