Tag Archives: Nanotechnology

Biochip Measures Glucose in Saliva, Not Blood

*Engineers at Brown University have designed a biological device that can measure glucose concentrations in human saliva. The technique could eliminate the need for diabetics to draw blood to check their glucose levels. The biochip uses plasmonic interferometers and could be used to measure a range of biological and environmental substances. Results are published in Nano Letters.*

PROVIDENCE, R.I. [Brown University] — For the 26 million Americans with diabetes, drawing blood is the most prevalent way to check glucose levels. It is invasive and at least minimally painful. Researchers at Brown University are working on a new sensor that can check blood sugar levels by measuring glucose concentrations in saliva instead.

The technique takes advantage of a convergence of nanotechnology and surface plasmonics, which explores the interaction of electrons and photons (light). The engineers at Brown etched thousands of plasmonic interferometers onto a fingernail-size biochip and measured the concentration of glucose molecules in water on the chip. Their results showed that the specially designed biochip could detect glucose levels similar to the levels found in human saliva. Glucose in human saliva is typically about 100 times less concentrated than in the blood. (more…)

Read More

UCLA Physicists Report Nanotechnology Feat With Proteins

UCLA physicists have made nanomechanical measurements of unprecedented resolution on protein molecules.

The new measurements, by UCLA physics professor Giovanni Zocchi and former UCLA physics graduate student Yong Wang, are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid.

“Proteins are the molecular machines of life, the molecules we are made of,” Zocchi said. “We have found that sometimes they behave as a solid and sometimes as a liquid. (more…)

Read More

Researcher Explains How Santa Delivers Presents in One Night

Don’t believe in Santa Claus? Magic, you say? In fact, science and technology explain how Santa is able to deliver toys to good girls and boys around the world in one night, according to a North Carolina State University researcher.

NC State’s Dr. Larry Silverberg, professor of mechanical and aerospace engineering, can explain the science and engineering principles that allow Santa, also known as Kris Kringle or Saint Nicholas, to pull off the magical feat year after year. (more…)

Read More

Telecommunications Wavelength Quantum Dot Laser Grown on Silicon Substrate

A new generation of high speed, silicon-based information technology has been brought a step closer by researchers in the Department of Electronic and Electrical Engineering at UCL and the London Centre for Nanotechnology. The team’s research, published in Nature Photonics journal, provides the first demonstration of an electrically driven, quantum dot laser grown directly on a silicon substrate (Si) with a wavelength (1300-nm) suitable for use in telecommunications. (more…)

Read More

Made in IBM Labs: Researchers Unveil Nanotechnology Circuits for Wireless Devices

*Scientists Build the First Wafer-Scale Graphene Integrated Circuit Smaller than a Pinhead*

Yorktown Heights, NY – 10 Jun 2011: Today, IBM Research scientists announced that they have achieved a milestone in creating a building block for the future of wireless devices. In a paper published yesterday in the magazine Science, IBM researchers announced the first integrated circuit fabricated from wafer-size graphene, and demonstrated a broadband frequency mixer operating at frequencies up to 10 gigahertz (10 billion cycles/second).

Designed for wireless communications, this graphene-based analog integrated circuit could improve today’s wireless devices and points to the potential for a new set of appli-cations. At today’s conventional frequencies, cell phone and transceiver signals could be improved, potentially allowing phones to work where they can’t today while, at much higher frequencies, military and medical personnel could see concealed weapons or conduct medical imaging without the same radiation dangers of X-rays. (more…)

Read More

Study Finds Public Relatively Unconcerned About Nanotechnology Risks

A new study finds that the general public thinks getting a suntan poses a greater public health risk than nanotechnology or other nanoparticle applications. The study, from North Carolina State University, compared survey respondents’ perceived risk of nanoparticles with 23 other public-health risks.

The study is the first to compare the public’s perception of the risks associated with nanoparticles to other environmental and health safety risks. Researchers found that nanoparticles are perceived as being a relatively low risk. (more…)

Read More

Study Highlights Flaw In Common Approach of Public Opinion Surveys About Science

A new study from North Carolina State University highlights a major flaw in attempting to use a single survey question to assess public opinion on science issues. Researchers found that people who say that risks posed by new science fields outweigh benefits often actually perceive more benefits than risks when asked more detailed questions. (more…)

Read More

Breakthrough in Nanocrystals Growth

Nanoparticles. Image credit: Wenge Yang

Argonne, ILL — For the first time scientists have been able to watch nanoparticles grow from the earliest stages of their formation. Nanoparticles are the foundation of nanotechnology and their performance depends on their structure, composition, and size. Researchers will now be able to develop ways to control conditions under which they are grown. The breakthrough will affect a wide range of applications including solar-cell technology and chemical and biological sensors. The research is published in NANOLetters.

As coauthor Wenge Yang of the Carnegie Institution’s Geophysical Laboratory explained: “It’s been very difficult to watch these tiny particles be born and grow in the past because traditional techniques require that the sample be in a vacuum and many nanoparticles are grown in a metal-conducting liquid. So we have not been able to see how different conditions affect the particles, much less understand how we can tweak the conditions to get a desired effect.” (more…)

Read More