Tag Archives: photons

UCLA physicists demonstrate method to study atoms critical to medicine

Multicolored laser light is the key to cooling these atoms to nearly absolute zero

UCLA physicists have shown that shining multicolored laser light on rubidium atoms causes them to lose energy and cool to nearly absolute zero. This result suggests that atoms fundamental to chemistry, such as hydrogen and carbon, could also be cooled using similar lasers, an outcome that would allow researchers to study the details of chemical reactions involved in medicine. (more…)

Read More

From the Lab to Your Digital Device, Quantum Dots Have Made Quantum Leaps

Berkeley Lab’s nanotechnology enlivens Nanosys’ displays, enhancing the color and saving energy.

Outside his career as a noted nanochemist, Lawrence Berkeley National Laboratory (Berkeley Lab) director Paul Alivisatos is an avid photographer. To show off his photos, his preferred device is a Kindle Fire HDX tablet because “the color display is a whole lot better than other tablets,” he says. (more…)

Read More

Rice-sized laser, powered one electron at a time, bodes well for quantum computing

Princeton University researchers have built a rice grain-sized laser powered by single electrons tunneling through artificial atoms known as quantum dots. The tiny microwave laser, or “maser,” is a demonstration of the fundamental interactions between light and moving electrons. (more…)

Read More

UCLA physicists played prominent role in Nobel Prize-winning Higgs boson research

Two large collaborations of scientists working at the Large Hadron Collider in Switzerland made worldwide news in July 2012 when they announced independent observations of the elusive Higgs boson particle — a discovery hailed as one of the greatest scientific accomplishments of recent decades.

This so-called “God particle” was first postulated some 50 years ago as a crucial element of the modern theory of the forces of nature — it is, physicists say, what gives everything in the universe mass — and it had been the subject of worldwide searches ever since. (more…)

Read More

Seeing in Color at the Nanoscale

Berkeley Lab scientists develop a new nanotech tool to probe solar-energy conversion

If nanoscience were television, we’d be in the 1950s. Although scientists can make and manipulate nanoscale objects with increasingly awesome control, they are limited to black-and-white imagery for examining those objects. Information about nanoscale chemistry and interactions with light—the atomic-microscopy equivalent to color—is tantalizingly out of reach to all but the most persistent researchers.

But that may all change with the introduction of a new microscopy tool from researchers at the Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) that delivers exquisite chemical details with a resolution once thought impossible. The team developed their tool to investigate solar-to-electric energy conversion at its most fundamental level, but their invention promises to reveal new worlds of data to researchers in all walks of nanoscience. (more…)

Read More

What’s Happening with the Higgs Boson

Berkeley Lab scientists, major contributors to the ATLAS experiment at the Large Hadron Collider, explain what the excitement is about

CERN, the European Organization for Nuclear Research headquartered in Geneva, Switzerland, will hold a seminar early in the morning on July 4 to announce the latest results from ATLAS and CMS, two major experiments at the Large Hadron Collider (LHC) that are searching for the Higgs boson. Both experimental teams are working down to the wire to finish analyzing their data, and to determine exactly what can be said about what they’ve found.

“We do not yet know what will be shown on July 4th,” says Ian Hinchliffe, a theoretical physicist in the Physics Division at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), who heads the Lab’s participation in the ATLAS experiment. “I have seen many conjectures on the blogs about what will be shown: these are idle speculation. Things are moving very fast this week, and it’s an exciting time at CERN. Many years of hard work are coming to fruition.” (more…)

Read More

Biochip Measures Glucose in Saliva, Not Blood

*Engineers at Brown University have designed a biological device that can measure glucose concentrations in human saliva. The technique could eliminate the need for diabetics to draw blood to check their glucose levels. The biochip uses plasmonic interferometers and could be used to measure a range of biological and environmental substances. Results are published in Nano Letters.*

PROVIDENCE, R.I. [Brown University] — For the 26 million Americans with diabetes, drawing blood is the most prevalent way to check glucose levels. It is invasive and at least minimally painful. Researchers at Brown University are working on a new sensor that can check blood sugar levels by measuring glucose concentrations in saliva instead.

The technique takes advantage of a convergence of nanotechnology and surface plasmonics, which explores the interaction of electrons and photons (light). The engineers at Brown etched thousands of plasmonic interferometers onto a fingernail-size biochip and measured the concentration of glucose molecules in water on the chip. Their results showed that the specially designed biochip could detect glucose levels similar to the levels found in human saliva. Glucose in human saliva is typically about 100 times less concentrated than in the blood. (more…)

Read More

Coming Soon to a Server Near You: Fewer Internet Delays

Researchers at the UA-led Center for Integrated Access Networks, the largest optical research center in the U.S., are developing methods to improve transmission speed, efficiency and reliability of Internet content, including everything from cell phone calls or texts to emails and television.

If you’ve ever received an email or text hours after it was sent and privately raged at having missed a deadline, or twiddled your thumbs while waiting for a webpage to load, then you’ve been a victim of Internet latency.

Latency can occur for a number of reasons associated with disruption of an information lane such as an electronic wire or fiber optic cable, or from an overload of Internet-based messaging that can occur with increased network traffic. (more…)

Read More