Tag Archives: afm

Sanftes Abtasten mit einer Lichtpinzette

Freiburger Forscher haben eine Methode entwickelt, die über Lichtkräfte weiche, strukturierte Oberflächen vermisst

Oberflächen trennen das Äußere vom Inneren, steuern chemische Reaktionen und regulieren den Austausch von Licht, Wärme und Feuchtigkeit. In der Natur und Technik spielen sie deshalb eine besondere Rolle. In der Fachzeitschrift „Nature Nanotechnology“ stellt der Freiburger Physiker Prof. Dr. Alexander Rohrbach zusammen mit seinem ehemaligen Doktoranden Dr. Lars Friedrich eine ultra-sanfte Abtastmethode für Oberflächen vor, die auf einer optischen Pinzette und Lichtkräften basiert. Mit solchen Mikroskopiemethoden ist es möglich, besonders empfindliche und kleinste Strukturen zu vermessen, ohne sie zu zerstören.


Read More

Seeing in Color at the Nanoscale

Berkeley Lab scientists develop a new nanotech tool to probe solar-energy conversion

If nanoscience were television, we’d be in the 1950s. Although scientists can make and manipulate nanoscale objects with increasingly awesome control, they are limited to black-and-white imagery for examining those objects. Information about nanoscale chemistry and interactions with light—the atomic-microscopy equivalent to color—is tantalizingly out of reach to all but the most persistent researchers.

But that may all change with the introduction of a new microscopy tool from researchers at the Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) that delivers exquisite chemical details with a resolution once thought impossible. The team developed their tool to investigate solar-to-electric energy conversion at its most fundamental level, but their invention promises to reveal new worlds of data to researchers in all walks of nanoscience. (more…)

Read More

Folding Funnels Key to Biomimicry

Berkeley Lab Finding that Protein Folding Funnels Also Apply to Self-Assembly Should Benefit Biomimicry and Nanosynthesis

Proteins are able to self-assemble into a wide range of highly ordered structures that feature a diverse array of properties. Through biomimicry – technological innovation inspired by nature – humans hope to emulate proteins and produce our own version of self-assembling molecules. A key to accomplishing this is understanding how protein-folding – a process critical to the form and function of a protein – is extended from individual proteins to complex assemblies.

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have now shown that a concept widely accepted as describing the folding of a single individual protein is also applicable to the self-assembly of multiple proteins. Their findings provide important guidelines for future biomimicry efforts, particularly for device fabrication and nanoscale synthesis. (more…)

Read More

IBM Scientists First to Distinguish Individual Molecular Bonds

Atomic force microscopy helps scientists to reveal the bond order and length of bonds within molecules

Technique can be used to study future devices made from graphene

Zurich, Switzerland – 14 Sep 2012: IBM scientists have been able to differentiate the chemical bonds in individual molecules for the first time using a technique known as noncontact atomic force microscopy (AFM).

The results push the exploration of using molecules and atoms at the smallest scale and could be important for studying graphene devices, which are currently being explored by both industry and academia for applications including high-bandwidth wireless communication and electronic displays. (more…)

Read More

Berkeley Lab Researchers Ink Nanostructures with Tiny ‘Soldering Iron’

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have shed light on the role of temperature in controlling a fabrication technique for drawing chemical patterns as small as 20 nanometers. This technique could provide an inexpensive, fast route to growing and patterning a wide variety of materials on surfaces to build electrical circuits and chemical sensors, or study how pharmaceuticals bind to proteins and viruses.

One way of directly writing nanoscale structures onto a substrate is to use an atomic force microscope (AFM) tip as a pen to deposit ink molecules through molecular diffusion onto the surface. Unlike conventional nanofabrication techniques that are expensive, require specialized environments and usually work with only a few materials, this technique, called dip-pen nanolithography, can be used in almost any environment to write many different chemical compounds. A cousin of this technique — called thermal dip-pen nanolithography — extends this technique to solid materials by turning an AFM tip into a tiny soldering iron. (more…)

Read More

IBM and University of Aberdeen Collaborate to Identify Molecules from the Deep Sea

–For the first time, atomic force microscopy helps scientists reveal the exact chemical structure of a natural compound

–Using this fast and accurate technique could open new possibilities in drug discovery and treatments

–Compound was extracted from a mud sample taken from the Mariana Trench, 10,916 meters (35,814 feet) below sea level


Read More