Leslie Rosenberg and his colleagues are about to go hunting. Their quarry: A theorized-but-never-seen elementary particle called an axion.
The search will be conducted with a recently retooled, extremely sensitive detector that is currently in a testing and shakeout phase at the University of Washington’s Center for Experimental Nuclear Physics and Astrophysics. (more…)
Nearly 50 years of experiments and billions of dollars in equipment followed the prediction of the Higgs mechanism by theoretical physicists in 1964. Ulrich Heintz and Meenakshi Narain, two of the particle physicists at Brown University who worked on experiments at Fermilab and at CERN, note that the successful search for the Higgs was caried on by thousands of researchers.
The Nobel Prize awarded today to Francois Englert and Peter Higgs was a long time in the making. The Higgs mechanism was invented almost 50 years ago, and ever since the standard model emerged as the explanation of everything in particle physics that we have observed so far. The search for the Higgs boson was a quest that heated up for particle physics experimenters with every new facility that came online. Some of us (Heintz, Narain) looked for it in their thesis experiment at the Cornell Electron Storage Ring in the 1980s. Then the search moved to European Organization for Nuclear Research (CERN) to the Large Electron Positron Collider, and back again to the Tevatron at Fermilab near Chicago, where we (Cutts, Heintz, Landsberg, Narain) were part of the discovery of the top quark in 1995 with the D-Zero experiment. (more…)
Two large collaborations of scientists working at the Large Hadron Collider in Switzerland made worldwide news in July 2012 when they announced independent observations of the elusive Higgs boson particle — a discovery hailed as one of the greatest scientific accomplishments of recent decades.
This so-called “God particle” was first postulated some 50 years ago as a crucial element of the modern theory of the forces of nature — it is, physicists say, what gives everything in the universe mass — and it had been the subject of worldwide searches ever since. (more…)
U.S. Department of Energy national laboratories – including Berkeley Lab – collaborate to build the new magnets CERN needs to increase LHC luminosity by an order of magnitude
The U.S. LHC Accelerator Program (LARP) has successfully tested a powerful superconducting quadrupole magnet that will play a key role in developing a new beam focusing system for CERN’s Large Hadron Collider (LHC). This advanced system, together with other major upgrades to be implemented over the next decade, will allow the LHC to produce 10 times more high-energy collisions than it was originally designed for.
Dubbed HQ02a, the latest in LARP’s series of High-Field Quadrupole magnets is wound with cables of the brittle but high-performance superconductor niobium tin (Nb3Sn). Compared to the final-focus quadrupoles presently in place at the LHC, which are made with niobium titanium, HQ02a has a larger aperture and superconducting coils designed to operate at a higher magnetic field. In a recent test at the Fermi National Accelerator Laboratory (Fermilab), HQ02a achieved all its challenging objectives. (more…)
Accelerating a free electron with a laser has been a longtime goal of solid-state physicists.
David Cline, a distinguished professor in the UCLA Department of Physics and Astronomy, and Xiaoping Ding, an assistant researcher at UCLA, have conducted research at Brookhaven National Laboratory in New York and have established that an electron beam can be accelerated by a laser in free space.
This has never been done before at high energies and represents a significant breakthrough, Cline said, adding that it also may have implications for fusion as a new energy source. (more…)
One of the world’s first working circular particle accelerators returns to Berkeley Lab—75 years later.
Seventy-five years after one of the world’s first working cyclotrons was handed to the London Science Museum, it has returned to its birthplace in the Berkeley hills, where the man who invented it, Ernest O. Lawrence, helped launch the field of modern particle physics as well as the national laboratory that would bear his name, Lawrence Berkeley National Laboratory.
On Jan. 9, 1932 the brass cyclotron—which measures 26 inches from end to end and whose accelerating chamber measures just 11 inches in diameter—was successfully used to boost protons to energies of 1.22 million electron volts. Its return to Berkeley Lab caps a decades-long saga in which various parties endeavored to secure the cyclotron’s return from London, but the persistence of Pamela Patterson, who chronicles Berkeley Lab’s history as managing editor of its website, finally paid off. (more…)
The long-sought Higgs boson—the particle that endows all elementary particles in the universe with mass—was elusive no longer when scientists at the CERN physics laboratory in Switzerland, discovered it last summer.
The July 4, 2012 announcement of the discovery appealed to both the general public and the media: Fifty-five media organizations and more than one billion television viewers made it an event that couldn’t be missed. Time even dubbed the Higgs boson “Particle of the Year.” (more…)