Tag Archives: accelerator technology

Successful Test of New U.S. Magnet Puts Large Hadron Collider on Track for Major Upgrade

U.S. Department of Energy national laboratories – including Berkeley Lab – collaborate to build the new magnets CERN needs to increase LHC luminosity by an order of magnitude

The U.S. LHC Accelerator Program (LARP) has successfully tested a powerful superconducting quadrupole magnet that will play a key role in developing a new beam focusing system for CERN’s Large Hadron Collider (LHC). This advanced system, together with other major upgrades to be implemented over the next decade, will allow the LHC to produce 10 times more high-energy collisions than it was originally designed for.

Dubbed HQ02a, the latest in LARP’s series of High-Field Quadrupole magnets is wound with cables of the brittle but high-performance superconductor niobium tin (Nb3Sn). Compared to the final-focus quadrupoles presently in place at the LHC, which are made with niobium titanium, HQ02a has a larger aperture and superconducting coils designed to operate at a higher magnetic field. In a recent test at the Fermi National Accelerator Laboratory (Fermilab), HQ02a achieved all its challenging objectives. (more…)

Read More

Anti-Helium Discovered in the Heart of STAR

*Berkeley Lab nuclear scientists join with their international colleagues in the latest record-breaking discovery at RHIC*

Eighteen examples of the heaviest antiparticle ever found, the nucleus of antihelium-4, have been made in the STAR experiment at RHIC, the Relativistic Heavy Ion Collider at the U.S. Department of Energy’s Brookhaven National Laboratory.

“The STAR experiment is uniquely capable of finding antihelium‑4,” says the STAR experiment’s spokesperson, Nu Xu, of the Nuclear Science Division (NSD) at Lawrence Berkeley National Laboratory (Berkeley Lab). “STAR already holds the record for massive antiparticles, last year having identified the anti-hypertriton, which contains three constituent antiparticles. With four antinucleons, antihelium-4 is produced at a rate a thousand times lower yet. To identify the 18 examples required sifting through the debris of a billion gold-gold collisions.” (more…)

Read More