Tag Archives: lawrence berkeley national laboratory

Berkeley Lab’s Saul Perlmutter wins Nobel Prize in Physics

BERKELEY, CA — Saul Perlmutter, an astrophysicist at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the universe through observations of distant supernovae.” Perlmutter heads the international Supernova Cosmology Project, which pioneered the methods used to discover the accelerating expansion of the universe, and he has been a leader in studies to determine the nature of dark energy.

Perlmutter shares the prize with Brian Schmidt and Adam Riess, leader of the High-z Supernova Search Team and first author of that team’s analysis, respectively, which led to their almost simultaneous announcement of accelerating expansion. (more…)

Read More

Get the Light, Beat the Heat

*Berkeley Lab Researchers Develop New Infrared Coating for Windows*

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have unveiled a semiconductor nanocrystal coating material capable of controlling heat from the sun while remaining transparent. Based on electrochromic materials, which use a jolt of electric charge to tint a clear window, this breakthrough technology is the first to selectively control the amount of near infrared radiation. This radiation, which leads to heating, passes through the film without affecting its visible transmittance. Such a dynamic system could add a critical energy-saving dimension to “smart window” coatings. (more…)

Read More

The Brittleness of Aging Bones – More than a Loss of Bone Mass

*Berkeley Lab Researchers Show How Loss of Bone Quality Also a Major Factor*

It is a well-established fact that as we grow older our bones become more brittle and prone to fracturing. It is also well established that loss of mass is a major reason for older bones fracturing more readily than younger bones, hence medical treatments have focused on slowing down this loss. However, new research from scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) shows that at microscopic dimensions, the age-related loss of bone quality can be every bit as important as the loss of quantity in the susceptibility of bone to fracturing. (more…)

Read More

Thawing Permafrost Could Release Vast Amounts of Carbon and Accelerate Climate Change by the end of this Century

*New computer modeling study, led by a Berkeley Lab scientist, could help revise understanding of permafrost’s role in global warming*

Billions of tons of carbon trapped in high-latitude permafrost may be released into the atmosphere by the end of this century as the Earth’s climate changes, further accelerating global warming, a new computer modeling study indicates.

The study also found that soil in high-latitude regions could shift from being a sink to a source of carbon dioxide by the end of the 21st century as the soil warms in response to climate change. (more…)

Read More

First Data from Daya Bay: Closing in on a Neutrino Mystery

*Berkeley Lab researchers are leaders in an international effort to close in on neutrino mass*

Some of the most intriguing questions in basic physics focus on neutrinos. How much do the different kinds weigh and which is the heaviest? The answers lie in how the three “flavors” of neutrinos – electron, muon, and tau neutrinos – oscillate or mix, changing from one to another as they race virtually without interruption through unbounded reaches of matter and space.

Three mathematical terms known as “mixing angles” described the process, and the Daya Bay Reactor Neutrino Experiment has just begun taking data to establish the last, least-known mixing angle to unprecedented precision. China and the United States lead the international Daya Bay Collaboration, including participants from Russia, the Czech Republic, Hong Kong, and Taiwan. U.S. participation is led by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). (more…)

Read More

Where the Earth’s Heat Comes From

*Berkeley Lab scientists join their KamLAND colleagues to measure the radioactive sources of Earth’s heat flow*

What spreads the sea floors and moves the continents? What melts iron in the outer core and enables the Earth’s magnetic field? Heat. Geologists have used temperature measurements from more than 20,000 boreholes around the world to estimate that some 44 terawatts (44 trillion watts) of heat continually flow from Earth’s interior into space. Where does it come from?

Radioactive decay of uranium, thorium, and potassium in Earth’s crust and mantle is a principal source, and in 2005 scientists in the KamLAND collaboration, based in Japan, first showed that there was a way to measure the contribution directly. The trick was to catch what KamLAND dubbed geoneutrinos – more precisely, geo-antineutrinos – emitted when radioactive isotopes decay. (KamLAND stands for Kamioka Liquid-scintillator Antineutrino Detector.) (more…)

Read More

Going Green: Berkeley Lab on a Path to Substantially Cut Its Emissions

*Energy use intensity is down; sustainability plan would reduce it even further.*

There’s an old saying that the cobbler’s children have no shoes. But at Lawrence Berkeley National Laboratory, whose scientists have pioneered many of the energy efficiency technologies being deployed around the world today, energy conservation is not neglected at home. In fact, a number of homegrown energy-savings technologies are in use at the Lab itself, allowing Berkeley Lab to substantially reduce its energy use intensity and make headway towards achieving significant cuts in its greenhouse gas emissions.

From cool roofs to automated building controls to advanced lighting systems, the Lab has implemented an assortment of measures which has resulted in a 44 percent decline in energy use intensity, or energy usage per square foot, since 1985. And greenhouse gas (GHG) emissions from Berkeley Lab facilities have shrunk by about 5 percent over the last two years. (more…)

Read More

Berkeley Lab Creates New Energy Model for Chinese Cities

To tally the energy consumption of a city, the usual method is to add up all the energy used by residents—when they drive their car or turn on the air-conditioning—plus all the energy consumed by commercial buildings and industries in their day-to-day operations. But how should one account for the energy that went into building the office park where people work or paving the roads that people drive? And what about the energy required to make the clothes they are wearing? (more…)

Read More