Tag Archives: tau neutrinos

First Data from Daya Bay: Closing in on a Neutrino Mystery

*Berkeley Lab researchers are leaders in an international effort to close in on neutrino mass*

Some of the most intriguing questions in basic physics focus on neutrinos. How much do the different kinds weigh and which is the heaviest? The answers lie in how the three “flavors” of neutrinos – electron, muon, and tau neutrinos – oscillate or mix, changing from one to another as they race virtually without interruption through unbounded reaches of matter and space.

Three mathematical terms known as “mixing angles” described the process, and the Daya Bay Reactor Neutrino Experiment has just begun taking data to establish the last, least-known mixing angle to unprecedented precision. China and the United States lead the international Daya Bay Collaboration, including participants from Russia, the Czech Republic, Hong Kong, and Taiwan. U.S. participation is led by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). (more…)

Read More

Where the Earth’s Heat Comes From

*Berkeley Lab scientists join their KamLAND colleagues to measure the radioactive sources of Earth’s heat flow*

What spreads the sea floors and moves the continents? What melts iron in the outer core and enables the Earth’s magnetic field? Heat. Geologists have used temperature measurements from more than 20,000 boreholes around the world to estimate that some 44 terawatts (44 trillion watts) of heat continually flow from Earth’s interior into space. Where does it come from?

Radioactive decay of uranium, thorium, and potassium in Earth’s crust and mantle is a principal source, and in 2005 scientists in the KamLAND collaboration, based in Japan, first showed that there was a way to measure the contribution directly. The trick was to catch what KamLAND dubbed geoneutrinos – more precisely, geo-antineutrinos – emitted when radioactive isotopes decay. (KamLAND stands for Kamioka Liquid-scintillator Antineutrino Detector.) (more…)

Read More