Tag Archives: neutrinos

THESEUS eröffnet Fenster in das frühe Universum

Tübinger Astrophysiker an Weltraummission der ESA beteiligt: Satellit durchsucht Weltall nach leuchtstarken Ereignissen

Astrophysiker der Universität Tübingen sind an einem neuen Projekt der europäischen Raumfahrtagentur ESA beteiligt: Als eines von drei Konzepten wurde die Mission „THESEUS“, bei der das Institut für Astronomie und Astrophysik (IAAT) eine wichtige Rolle spielt, in das Wissenschaftsprogramm aufgenommen. Der Satellit könnte 2032 starten und soll das frühe Universum erkunden, insbesondere die ersten 1,5 Milliarden Jahre nach dem Urknall. (more…)

Read More

Licht im dunklen Universum

Mit einer Förderung von zwei Millionen Euro will der Physiker Marc Schumann die Suche nach Dunkler Materie voranbringen

Sie macht etwa 25 Prozent des Weltalls aus und hält wie ein kosmischer Klebstoff einzelne Galaxien und ganze Galaxienhaufen zusammen – dabei hat sie noch nie jemand direkt gesehen: Dunkle Materie gehört zu den größten Geheimnissen des Universums. (more…)

Read More

Ghosts are always welcome, when you’re looking for neutrinos

Halloween has come and gone, but Yale physicist Bonnie Fleming still has ghosts in her machine.

On Oct. 15, Fleming and colleagues at the MicroBooNE physics experiment in Illinois detected their first neutrino candidates, which are also known as ghost particles. It represents a milestone for the project, involving years of hard work and a 40-foot-long particle detector that is filled with 170 tons of liquid argon. (more…)

Read More

It’s go time for LUX-Zeplin experiment in dark matter

From the physics labs at Yale University to the bottom of a played-out gold mine in South Dakota, a new generation of dark matter experiments is ready to commence.

The U.S. Department of Energy’s Office of Science and the National Science Foundation recently gave the go-ahead to LUX-Zeplin (LZ), a key experiment in the hunt for dark matter, the invisible substance that may make up much of the universe. Daniel McKinsey, a professor of physics, leads a contingent of Yale scientists working on the project. (more…)

Read More

Cosmic Ray Mystery

Massive detector homes in on cosmic ray production

IceCube, an international collaboration involving University of Delaware scientists, is shedding new light on cosmic ray production.

Although cosmic rays were discovered 100 years ago, their origin remains one of the most enduring mysteries in physics. Now, the IceCube Neutrino Observatory, a massive detector in Antarctica, is homing in on how the highest energy cosmic rays are produced. (more…)

Read More

Fast Times in Physics

A U physicist will help determine if neutrinos can outrace light

Back in 2007, a physics experiment clocked elusive subatomic particles called neutrinos going faster than light.

That wasn’t supposed to happen. If the speed of light in a vacuum—denoted “c” by physicists—isn’t the universal speed limit, it would mean that Einstein put the wrong number in his famous E=mc2 equation.

University of Minnesota physicist Marvin Marshak was part of the experiment, called MINOS. It clocked beams of neutrinos shot from Fermilab, a national physics lab near Chicago, to a detector 457 miles away in the Soudan Underground Laboratory in northern Minnesota. (more…)

Read More

First Data from Daya Bay: Closing in on a Neutrino Mystery

*Berkeley Lab researchers are leaders in an international effort to close in on neutrino mass*

Some of the most intriguing questions in basic physics focus on neutrinos. How much do the different kinds weigh and which is the heaviest? The answers lie in how the three “flavors” of neutrinos – electron, muon, and tau neutrinos – oscillate or mix, changing from one to another as they race virtually without interruption through unbounded reaches of matter and space.

Three mathematical terms known as “mixing angles” described the process, and the Daya Bay Reactor Neutrino Experiment has just begun taking data to establish the last, least-known mixing angle to unprecedented precision. China and the United States lead the international Daya Bay Collaboration, including participants from Russia, the Czech Republic, Hong Kong, and Taiwan. U.S. participation is led by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). (more…)

Read More

Where the Earth’s Heat Comes From

*Berkeley Lab scientists join their KamLAND colleagues to measure the radioactive sources of Earth’s heat flow*

What spreads the sea floors and moves the continents? What melts iron in the outer core and enables the Earth’s magnetic field? Heat. Geologists have used temperature measurements from more than 20,000 boreholes around the world to estimate that some 44 terawatts (44 trillion watts) of heat continually flow from Earth’s interior into space. Where does it come from?

Radioactive decay of uranium, thorium, and potassium in Earth’s crust and mantle is a principal source, and in 2005 scientists in the KamLAND collaboration, based in Japan, first showed that there was a way to measure the contribution directly. The trick was to catch what KamLAND dubbed geoneutrinos – more precisely, geo-antineutrinos – emitted when radioactive isotopes decay. (KamLAND stands for Kamioka Liquid-scintillator Antineutrino Detector.) (more…)

Read More