Tag Archives: subatomic particles

Ghosts are always welcome, when you’re looking for neutrinos

Halloween has come and gone, but Yale physicist Bonnie Fleming still has ghosts in her machine.

On Oct. 15, Fleming and colleagues at the MicroBooNE physics experiment in Illinois detected their first neutrino candidates, which are also known as ghost particles. It represents a milestone for the project, involving years of hard work and a 40-foot-long particle detector that is filled with 170 tons of liquid argon. (more…)

Read More

Nobels explained

UD faculty members discuss 2013 prize-winners at annual symposium

Today’s chemists might work at a computer as often as in a laboratory, medical researchers studying conditions such as diabetes rely on understanding how cells carry and deposit materials within the body, and average investors in the market increasingly buy index funds to average out the short-term ups and downs of individual stocks.

The discoveries that led to these changes are among the work that was honored by this year’s Nobel Prizes. (more…)

Read More

UCLA physicists’ technique for cooling molecules may be a stepping stone to quantum computing

The next generation of computers promises far greater power and faster processing speeds than today’s silicon-based based machines. These “quantum computers” — so called because they would harness the unique quantum mechanical properties of atomic particles — could draw their computing power from a collection of super-cooled molecules.

But chilling molecules to a fraction of a degree above absolute zero, the temperature at which they can be manipulated to store and transmit data, has proven to be a difficult challenge for scientists. (more…)

Read More

Researchers Propose New Way to Probe Earth’s Deep Interior

AUSTIN, Texas — Researchers from Amherst College and The University of Texas at Austin have described a new technique that might one day reveal in higher detail than ever before the composition and characteristics of the deep Earth.

There’s just one catch: The technique relies on a fifth force of nature (in addition to gravity, the weak and strong nuclear forces and electromagnetism) that has not yet been detected, but which some particle physicists think might exist. Physicists call this type of force a long-range spin-spin interaction. If it does exist, this exotic new force would connect matter at Earth’s surface with matter hundreds or even thousands of kilometers below, deep in Earth’s mantle. In other words, the building blocks of atoms—electrons, protons, and neutrons—separated over vast distances would “feel” each other’s presence. The way these particles interact could provide new information about the composition and characteristics of the mantle, which is poorly understood because of its inaccessibility. (more…)

Read More

Bright Stars to Black Holes: UA Astronomer Awarded for Her Research

In addition to being selected as one of 50 scholars awarded fellowships each year at the prestigious Radcliffe Institute at Harvard University, the UA’s Feryal Ozel has won the 2013 American Physical Society’s Maria Goeppert Mayer Award for her cutting-edge research on neutron stars.

Feryal Ozel studies two things most people don’t think about everyday: neutron stars and black holes.

An associate professor of astronomy at the University of Arizona, Ozel has won the 2013 American Physical Society’s Maria Goeppert Mayer Award for her work on neutron stars and her dedication to public outreach and education in science and astronomy. In addition, this year she is completing a prestigious fellowship at the Radcliffe Institute at Harvard University. Ozel came to the UA in 2003 as a NASA Hubble fellow and began a faculty position in 2005. (more…)

Read More

Storm-chasing Spacecraft

A U-led experiment flies on a NASA mission to Earth’s radiation belts

The story goes that when Earth’s Van Allen Radiation Belts were first discovered, scientists were so amazed by the intensity of radiation, they thought they’d stumbled onto a Soviet nuclear test.

But they soon discovered that Earth is girdled by two concentric, doughnut-shaped regions of space, churning with radiation from protons, electrons, and other charged subatomic particles trapped in Earth’s magnetic field. (more…)

Read More

Fast Times in Physics

A U physicist will help determine if neutrinos can outrace light

Back in 2007, a physics experiment clocked elusive subatomic particles called neutrinos going faster than light.

That wasn’t supposed to happen. If the speed of light in a vacuum—denoted “c” by physicists—isn’t the universal speed limit, it would mean that Einstein put the wrong number in his famous E=mc2 equation.

University of Minnesota physicist Marvin Marshak was part of the experiment, called MINOS. It clocked beams of neutrinos shot from Fermilab, a national physics lab near Chicago, to a detector 457 miles away in the Soudan Underground Laboratory in northern Minnesota. (more…)

Read More