Tag Archives: minos

New Results from Daya Bay – Tracking the Disappearance of Ghostlike Neutrinos

Daya Bay neutrino experiment releases high-precision measurement of subatomic shape shifting and new result on differences among neutrino masses

The international Daya Bay Collaboration has announced new results about the transformations of neutrinos – elusive, ghostlike particles that carry invaluable clues about the makeup of the early universe.  The latest findings include the collaboration’s first data on how neutrino oscillation – in which neutrinos mix and change into other “flavors,” or types, as they travel – varies with neutrino energy, allowing the measurement of a key difference in neutrino masses known as mass splitting.

“Understanding the subtle details of neutrino oscillations and other properties of these shape-shifting particles may help resolve some of the deepest mysteries of our universe,” said Jim Siegrist, Associate Director of Science for High Energy Physics at the U.S. Department of Energy (DOE), the primary funder of U.S. participation in Daya Bay. (more…)

Read More

Fast Times in Physics

A U physicist will help determine if neutrinos can outrace light

Back in 2007, a physics experiment clocked elusive subatomic particles called neutrinos going faster than light.

That wasn’t supposed to happen. If the speed of light in a vacuum—denoted “c” by physicists—isn’t the universal speed limit, it would mean that Einstein put the wrong number in his famous E=mc2 equation.

University of Minnesota physicist Marvin Marshak was part of the experiment, called MINOS. It clocked beams of neutrinos shot from Fermilab, a national physics lab near Chicago, to a detector 457 miles away in the Soudan Underground Laboratory in northern Minnesota. (more…)

Read More

A “Jumping Gene’s” Preferred Targets May Influence Genome Evolution

Baltimore, MD — The human genome shares several peculiarities with the DNA of just about every other plant and animal. Our genetic blueprint contains numerous entities known as transposons, or “jumping genes,” which have the ability to move from place to place on the chromosomes within a cell.

An astounding 50% of human DNA comprises both active transposon elements and the decaying remains of former transposons that were active thousands to millions of years ago before becoming damaged and immobile. If all of this mobile and formerly mobile DNA were not mysterious enough, every time a plant, animal or human cell prepares to divide, the chromosome regions richest in transposon-derived sequences, even elements long deceased, are among the last to duplicate. The reason for their delayed duplication, if there is one, has eluded biologists for more than 50 years. (more…)

Read More