Tag Archives: genome

Aging Cells Lose Their Grip on DNA Rogues

Transposable elements are mobile strands of DNA that insert themselves into chromosomes with mostly harmful consequences. Cells try to keep them locked down, but in a new study, Brown University researchers report that aging cells lose their ability to maintain this control. The result may be a further decline in the health of senescent cells and of the aging bodies they compose.

PROVIDENCE, R.I. [Brown University] — Even in our DNA there is no refuge from rogues that prey on the elderly. Parasitic strands of genetic material called transposable elements — transposons — lurk in our chromosomes, poised to wreak genomic havoc. Cells have evolved ways to defend themselves, but in a new study, Brown University researchers describe how cells lose this ability as they age, possibly resulting in a decline in their function and health. (more…)

Read More

Mutations in Genes that Modify DNA Packaging Result in form of Muscular Dystrophy

A recent finding by medical geneticists sheds new light on how facioscapulohumeral muscular dystrophy develops and how it might be treated. More commonly known as FSHD, the devastating disease affects both men and women.

FSHD is usually an inherited genetic disorder, yet sometimes appears spontaneously via new mutations in individuals with no family history of the condition.

“People with the condition experience progressive muscle weakness and about 1 in 5 require wheelchair assistance by age 40,” said Dr. Daniel G. Miller, University of Washington associate professor of pediatrics in the Division of Genetic Medicine. Miller and his worldwide collaborators study the molecular events leading to symptoms of FSHD in the hopes of designing therapies to prevent the emergence of symptoms or reduce their severity. (more…)

Read More

Cracking the Oyster’s Code

International team of scientists finds adaptations to stress in oyster genome

When it comes to stress, oysters know how to deal. The tough-shelled mollusks can survive temperature fluctuations, toxic metals and exposure to air, and a new study of their genetic makeup is helping to explain how.

An international team of scientists, including the University of Delaware’s Patrick M. Gaffney, professor of marine biosciences, sequenced the genome of the Pacific oyster, Crassostrea gigas, in a Nature paper published on Sept. 19. (more…)

Read More

Yale Team Finds Order Amidst the Chaos Within the Human Genome; Mom and Dad’s Contributions Counted and Fossil DNA Not Dead After All

The Encyclopedia of DNA Elements (ENCODE) project is the effort of hundreds of scientists to describe the workings of the human genome. Their research, outlined in 30 papers published in multiple journals Sept. 5, has confirmed our genome is far more complex than originally thought.  Regions that contain instructions for making proteins, which carry out life’s functions, account for only about 1 percent of our genome. ENCODE has shed light on the other 99%. Almost 80 percent of the genome is biochemically active, much of it involved in some sort of regulation of genes. Vast regions of our DNA once considered “junk” contain some 400,000 regulators called enhancers, which play a key role activating or silencing genes despite residing far away from the gene itself. Yale University researchers played a key role ENCODE, helping to author 9 of the 30 papers published in four journals on Sept. 5. Some of their work is described below.

The massive Encyclopedia of DNA Elements (ENCODE) unveiled Sept. 5 reveals a human genome vastly more rich and complex than envisioned even a decade ago. In a key supporting paper published in the journal Nature, the lab of Yale’s Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics, has found order amidst the seeming chaos of trillions of potential molecular interactions. (more…)

Read More

More Sophisticated Wiring, Not Just a Bigger Brain, Helped Humans Evolve Beyond Chimps

Human and chimp brains look anatomically similar because both evolved from the same ancestor millions of years ago. But where does the chimp brain end and the human brain begin?

A new UCLA study pinpoints uniquely human patterns of gene activity in the brain that could shed light on how we evolved differently than our closest relative. The identification of these genes could improve understanding of human brain diseases like autism and schizophrenia, as well as learning disorders and addictions.

The research appears Aug. 22 in the advance online edition of the journal Neuron. (more…)

Read More

Gene Mutations Cause Massive Brain Asymmetry

Discovery could help lead to prevention of radical surgery for rare childhood disease

Hemimegalencephaly is a rare but dramatic condition of infancy in which half the brain is malformed and much larger than the other half. Its cause is unknown, but the current treatment is radical: the surgical disconnection and removal of the diseased half of the brain.

In a paper published in the June 24 online issue of the journal Nature Genetics, a team of doctors and scientists says mutations in a trio of genes that help regulate cell size and proliferation are likely culprits in causing the disorder, though perhaps not the only ones.

These mutations, known as de novo somatic mutations, are genetic changes in the cells of the brain. Because they are in non-sex organs, the mutations are not transmitted to the child by either parent. (more…)

Read More

Crocodilian Evolution

UD’s Schmidt studies genome of crocodile family in evolution research

University of Delaware scientist Carl Schmidt is working to identify genes in crocodiles, alligators and gharials as he searches for links between the creatures that could give clues as to how they evolved over the years in relation to one another.

Schmidt’s effort is part of a National Science Foundation-funded project being conducted by a team of researchers assembled by David Ray, an evolutionary biologist at Mississippi State University. (more…)

Read More