Yale researchers have discovered how megakaryocytes — giant blood cells that produce wound-healing platelets — manage to grow 10 to 15 times larger than other blood cells.
The findings, to be published March 13 in the journal Developmental Cell, also hint at how a malfunction in this process may cause a form of leukemia. (more…)
Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed cell death. The study is in the Feb. 17 issue of Cell.
Mitochondria are cellular structures that function as “cellular power plants” because they generate most of the cell’s supply of energy. They contain DNA inherited from one’s mother. Mitochondria determine whether a cell lives or dies via the process of programmed cell death, or apoptosis. (more…)
*Study implicates “arms race” between genes and germs*
Biologists have found new evidence of why mice, people and other vertebrate animals carry thousands of varieties of genes to make immune-system proteins named MHCs–even though some of those genes make vertebrate animals susceptible to infections and to autoimmune diseases.
“Major histocompatibility complex” (MHC) proteins are found on the surfaces of most cells in vertebrate animals. They distinguish proteins like themselves from foreign proteins, and trigger an immune response against these foreign invaders. (more…)
Yale Cancer Center researchers have identified a gene in melanoma that can dramatically affect the spread of the disease. The study, published in the journal Cancer Cell, provides new insight into how melanoma metastasizes in patients with advanced disease, and which organs are most likely to be affected. These findings could potentially lead to new drug treatments.
Malignant melanoma is the most deadly form of skin cancer, accounting for 80 percent of all skin cancer deaths. Nearly all melanoma deaths are a result of metastasis, which can occur early in the course of tumor growth in the skin. (more…)
The Woods Hole Oceanographic Institution (WHOI) has signed a $1.18 million agreement with the Flatley Discovery Lab in Charlestown, Mass., to investigate and supply marine microbial extracts as possible treatments for cystic fibrosis (CF).
The life-shortening respiratory disease has eluded attempts at a cure, although researchers have been successful in some cases at adding years to a person’s lifespan, primarily through treatment with antibiotics. (more…)
EAST LANSING, Mich. — Continuing a global effort to prevent malaria infections, Michigan State University researchers have created a new malaria vaccine – one that combines the use of a disabled cold virus with an immune system-stimulating gene – that appears to increase the immune response against the parasite that causes the deadly disease.
At the same time, the group led by Andrea Amalfitano of the College of Osteopathic Medicine also discovered another immune-system stimulating agent – created at MSU and which has been successful in improving immune responses in vaccines for diseases such as HIV – paradoxically made for a less effective malaria vaccine. (more…)
A genome-wide association study published in the August issue of Nature Medicine has found two tiny genetic variations that can predict which patients with Hodgkin’s lymphoma are most likely to develop radiation-induced second cancers years after treatment. Knowing in advance who is at risk could help physicians tailor treatment to reduce the risks for patients who are most susceptible to long-term damage.
Hodgkin’s lymphoma is one of the most treatable cancers, with more than 90 percent of patients surviving after a combination of radiation and chemotherapy. But nearly 20 percent of patients treated as children develop a second cancer within 30 years. The younger the patients are when treated and the higher the radiation dose, the greater the risk. This late side effect of treatment is the second leading cause of death for long-term Hodgkin’s survivors. (more…)
A rose by any other name would smell … like celery?
North Carolina State University research intended to extend the “vase life” of roses inserts a gene from celery inside rose plants to help fight off botrytis, or petal blight, one of the rose’s major post-harvest diseases.
Some fungal pathogens, the bad guys that infect plants, produce a sugar alcohol called mannitol that interferes with the plant’s ability to block disease like petal blight, which produces wilty, mushy petals – an effect similar to what happens to lettuce when it’s been in the crisper too long. (more…)