Tag Archives: berkeley lab

The Brittleness of Aging Bones – More than a Loss of Bone Mass

*Berkeley Lab Researchers Show How Loss of Bone Quality Also a Major Factor*

It is a well-established fact that as we grow older our bones become more brittle and prone to fracturing. It is also well established that loss of mass is a major reason for older bones fracturing more readily than younger bones, hence medical treatments have focused on slowing down this loss. However, new research from scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) shows that at microscopic dimensions, the age-related loss of bone quality can be every bit as important as the loss of quantity in the susceptibility of bone to fracturing. (more…)

Read More

Thawing Permafrost Could Release Vast Amounts of Carbon and Accelerate Climate Change by the end of this Century

*New computer modeling study, led by a Berkeley Lab scientist, could help revise understanding of permafrost’s role in global warming*

Billions of tons of carbon trapped in high-latitude permafrost may be released into the atmosphere by the end of this century as the Earth’s climate changes, further accelerating global warming, a new computer modeling study indicates.

The study also found that soil in high-latitude regions could shift from being a sink to a source of carbon dioxide by the end of the 21st century as the soil warms in response to climate change. (more…)

Read More

First Data from Daya Bay: Closing in on a Neutrino Mystery

*Berkeley Lab researchers are leaders in an international effort to close in on neutrino mass*

Some of the most intriguing questions in basic physics focus on neutrinos. How much do the different kinds weigh and which is the heaviest? The answers lie in how the three “flavors” of neutrinos – electron, muon, and tau neutrinos – oscillate or mix, changing from one to another as they race virtually without interruption through unbounded reaches of matter and space.

Three mathematical terms known as “mixing angles” described the process, and the Daya Bay Reactor Neutrino Experiment has just begun taking data to establish the last, least-known mixing angle to unprecedented precision. China and the United States lead the international Daya Bay Collaboration, including participants from Russia, the Czech Republic, Hong Kong, and Taiwan. U.S. participation is led by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). (more…)

Read More

Where the Earth’s Heat Comes From

*Berkeley Lab scientists join their KamLAND colleagues to measure the radioactive sources of Earth’s heat flow*

What spreads the sea floors and moves the continents? What melts iron in the outer core and enables the Earth’s magnetic field? Heat. Geologists have used temperature measurements from more than 20,000 boreholes around the world to estimate that some 44 terawatts (44 trillion watts) of heat continually flow from Earth’s interior into space. Where does it come from?

Radioactive decay of uranium, thorium, and potassium in Earth’s crust and mantle is a principal source, and in 2005 scientists in the KamLAND collaboration, based in Japan, first showed that there was a way to measure the contribution directly. The trick was to catch what KamLAND dubbed geoneutrinos – more precisely, geo-antineutrinos – emitted when radioactive isotopes decay. (KamLAND stands for Kamioka Liquid-scintillator Antineutrino Detector.) (more…)

Read More

Berkeley Scientists Pioneer Nanoscale Nuclear Materials Testing Capability

Nuclear power is a major component of our nation’s long-term clean-energy future, but the technology has come under increased scrutiny in the wake of Japan’s recent Fukushima disaster. Indeed, many nations have called for checks and “stress tests” to ensure nuclear plants are operating safely.

In the United States, about 20 percent of our electricity and almost 70 percent of the electricity from emission-free sources, including renewable technologies and hydroelectric power plants, is supplied by nuclear power. Along with power generation, many of the world’s nuclear facilities are used for research, materials testing, or the production of radioisotopes for the medical industry. The service life of structural and functional material components in these facilities is therefore crucial for ensuring reliable operation and safety. (more…)

Read More

When Matter Melts

*By comparing theory with data from STAR, Berkeley Lab scientists and their colleagues map phase changes in the quark-gluon plasma*

In its infancy, when the universe was a few millionths of a second old, the elemental constituents of matter moved freely in a hot, dense soup of quarks and gluons. As the universe expanded, this quark–gluon plasma quickly cooled, and protons and neutrons and other forms of normal matter “froze out”: the quarks became bound together by the exchange of gluons, the carriers of the color force.

“The theory that describes the color force is called quantum chromodynamics, or QCD,” says Nu Xu of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the spokesperson for the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at DOE’s Brookhaven National Laboratory. “QCD has been extremely successful at explaining interactions of quarks and gluons at short distances, such as high-energy proton and antiproton collisions at Fermi National Accelerator Laboratory. But in bulk collections of matter – including the quark-gluon plasma – at longer distances or smaller momentum transfer, an approach called lattice gauge theory has to be used.” (more…)

Read More

ALPHA Stores Antimatter Atoms Over a Quarter of an Hour – and Still Counting

*Berkeley Lab physicists join with their international colleagues in reaching a new frontier in antimatter science*

The ALPHA Collaboration, an international team of scientists working at CERN in Geneva, Switzerland, has reported storing a total of 309 atoms of antihydrogen, some for up to 1,000 seconds (almost 17 minutes), with an indication of much longer storage time as well.

ALPHA announced in November, 2010, that they had succeeded in storing antimatter atoms for the first time ever, having captured 38 atoms of antihydrogen and storing each for a sixth of a second. In the weeks following, ALPHA continued to collect anti-atoms and hold them for longer and longer times. (more…)

Read More

Aggressive Efficiency and Electrification Needed to Cut California Emissions

*Berkeley Lab joint report offers a variety of scenarios to reduce emissions to 80% below 1990 levels.*

Berkeley, CA — In the next 40 years, California’s population is expected to surge from 37 million to 55 million and the demand for energy is expected to double. Given those daunting numbers, can California really reduce its greenhouse gas emissions to 80 percent below 1990 levels by 2050, as required by an executive order? Scientists from Lawrence Berkeley National Laboratory who co-wrote a new report on California’s energy future are optimistic that the target can be achieved, though not without bold policy and behavioral changes as well as some scientific innovation.

The report, titled “California’s Energy Future­­—The View to 2050,” ­draws a series of energy system “portraits” showing how California can meet its ambitious emissions targets using a combination of measures and energy sources that may include electrification, enhanced efficiency, nuclear energy, renewable energy sources, grid modernization, and carbon capture and sequestration (CCS). (more…)

Read More