Tag Archives: malignant phenotype

Protein Linked to Therapy Resistance in Breast Cancer

Berkeley Lab Researchers Identify Possible New Oncogene and Future Therapy Target

A gene that may possibly belong to an entire new family of oncogenes has been linked by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) with breast cancer resistance to a well-regarded and widely used cancer therapy.

One of the world’s leading breast cancer researchers, Mina Bissell, Distinguished Scientist with Berkeley Lab’s Life Sciences Division, led a study in which a protein known as FAM83A was linked to resistance to the cancer drugs known as EGFR-TKIs (Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors). Not only may this discovery explain the clinical correlation between a high expression of FAM83A and a poor prognosis for breast cancer patients, it may also provide a new target for future therapies. (more…)

Read More

Berkeley Lab Scientists Find That Normal Breast Cells Help Kill Cancer Cells

It is well known that the human body has a highly developed immune system to detect and destroy invading pathogens and tumor cells. Now, researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that the body has a second line of defense against cancer – healthy cells. A new study shows that normal mammary epithelial cells, as they are developing, secrete interleukin 25, a protein known for its role in the immune system’s response to inflammation, for the express purpose of killing nearby breast cancer cells.

“We found that normal breast cells provide an innate defense mechanism against cancer by producing interleukin 25 (IL25) to actively and specifically kill breast cancer cells,” says breast cancer authority Mina Bissell, of Berkeley Lab’s Life Sciences Division, who led this research. “This suggests that IL25 receptor signaling may provide a new therapeutic target for the treatment of breast cancer.” (more…)

Read More