Tag Archives: green fluorescent protein

Glow-in-the-Dark Millipede Says ‘Stay Away’

*The world’s only bioluminescent millipedes use their glow as a warning signal to nocturnal predators, a UA-led research team has discovered.*

As night falls in certain mountain regions in California, a strange breed of creepy crawlies emerges from the soil: millipedes that glow in the dark. The reason behind the glowing secret has stumped biologists until now.

Paul Marek, a research associate in the University of Arizona’s department of entomology and Center for Insect Science, and his team now provide the first evidence gained from field experiments of bioluminescence being used as a warning signal. They discovered that the nightly glow of millipedes belonging to the genus Motyxia helps the multi-legged invertebrates avoid attacks by predators. (more…)

Read More

A Second Pathway for Antidepressants: Berkeley Lab Reports New Fluorescent Assay Reveals TREK1 Mechanism

Using a unique and relatively simple cell-based fluorescent assay they developed, scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC), Berkeley have identified a means by which fluoxetine, the active ingredient in Prozac, suppresses the activity of the TREK1 potassium channel. TREK1 activity has been implicated in mood regulation and could be an important target for fluoxetine and other antidepressant drugs. (more…)

Read More

Stem Cell Transplants in Mice Produce Lifelong Enhancement of Muscle Mass

A University of Colorado at Boulder-led study shows that specific types of stem cells transplanted into the leg muscles of mice prevented the loss of muscle function and mass that normally occurs with aging, a finding with potential uses in treating humans with chronic, degenerative muscle diseases.

The experiments showed that when young host mice with limb muscle injuries were injected with muscle stem cells from young donor mice, the cells not only repaired the injury within days, they caused the treated muscle to double in mass and sustain itself through the lifetime of the transplanted mice. “This was a very exciting and unexpected result,” said Professor Bradley Olwin of CU-Boulder’s molecular, cellular and developmental biology department, the study’s corresponding author. (more…)

Read More