Category Archives: Science

Mastermind Steroid Found in Plants

Palo Alto, CA — Scientists have known for some time how important plant steroids called brassinosteroids are for regulating plant growth and development. But until now, they did not know how extensive their reach is. 

Now researchers, including Yu Sun and Zhi-Yong Wang at Carnegie’s Department of Plant Biology, have identified about a thousand brassinosteroid target genes, which reveal molecular links between the steroid and numerous cellular functions and other hormonal and light-activated chain reactions. The study, published in the November 16, 2010, issue of Developmental Cell, provides the first comprehensive action map for a plant hormone. The research will help accelerate basic plant science and crop research.  (more…)

Read More

Trapping Antihydrogen: Antimatter Atoms Successfully Stored for the First Time

An artist’s impression of an antihydrogen atom – a negatively charged antiproton orbited by a positively charge anti-electron, or positron – trapped by magnetic fields. Image credit:Katie Bertsche

Atoms of antimatter have been trapped and stored for the first time by the ALPHA collaboration, an international team of scientists working at CERN, the European Organization for Nuclear Research near Geneva, Switzerland. Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and the University of California at Berkeley have made key contributions to the ongoing international effort.

ALPHA stored atoms of antihydrogen, consisting of a single negatively charged antiproton orbited by a single positively charged anti-electron (positron). While the number of trapped anti-atoms is far too small to fuel the Starship Enterprise’s matter-antimatter reactor, this advance brings closer the day when scientists will be able to make precision tests of the fundamental symmetries of nature. Measurements of anti-atoms may reveal how the physics of antimatter differs from that of the ordinary matter that dominates the world we know today.

Large quantities of antihydrogen atoms were first made at CERN eight years ago by two other teams. Although they made antimatter they couldn’t store it, because the anti-atoms touched the ordinary-matter walls of the experiments within millionths of a second after forming and were instantly annihilated—completely destroyed by conversion to energy and other particles. (more…)

Read More

Rare Earth Elements in U.S. Not So Rare

*Significant Deposits Found in 14 States*

Rare Earth Elements. Image credit: USGS

Approximately 13 million metric tons of rare earth elements (REE) exist within known deposits in the United States, according to the first-ever nationwide estimate of these elements by the U.S. Geological Survey.

This estimate of domestic rare earth deposits is part of a larger report that includes a review of global sources for REE, information on known deposits that might provide domestic sources of REE in the future, and geologic information crucial for studies of the availability of REE to U.S. industry.

The report describes significant deposits of REE in 14 states, with the largest known REE deposits at Mountain Pass, Calif.; Bokan Mountain, Alaska; and the Bear Lodge Mountains, Wyo. The Mountain Pass mine produced REE until it closed in 2002. Additional states with known REE deposits include Colorado, Florida, Georgia, Idaho, Illinois, Missouri, Nebraska, New Mexico, New York, North Carolina, and South Carolina. (more…)

Read More

Tropical Forest Diversity Increased During Ancient Global Warming Event

The steamiest places on the planet are getting warmer. Conservative estimates suggest that tropical areas can expect temperature increases of 3 degrees Celsius by the end of this century. Does global warming spell doom for rainforests? Maybe not. Carlos Jaramillo, staff scientist at the Smithsonian Tropical Research Institute, and colleagues report in the journal Science that nearly 60 million years ago rainforests prospered at temperatures that were 3-5 degrees higher and at atmospheric carbon dioxide levels 2.5 times today’s levels.

About the image: This is a scanning electron microscopy image of characteristic angiosperm pollen taxa from the Paleocene-Eocene Thermal Maximum. Image credit: Francy Carvajal, Smithsonian Tropical Research Institute (more…)

Read More

Change in Temperature Uncovers Genetic Cross Talk in Plant Immunity

*University of Missouri investigators’ discovery sheds light on how plants fight off bacterial infections*

Columbia, MO — Like us, plants rely on an immune system to fight off disease. Proteins that scout out malicious bacterial invaders in the cell and communicate their presence to the nucleus are important weapons in the plant’s disease resistance strategy. Researchers at the University of Missouri recently “tapped” into two proteins’ communications with the nucleus and discovered a previously unknown level of cross talk. The discovery adds important new information about how plant proteins mediate resistance to bacteria that cause disease and may ultimately lead to novel strategies for boosting a plant’s immune system.

Special proteins in the plant, called resistance proteins, can recognize highly specific features of proteins from pathogen, called effector proteins. When a pathogen is detected, a resistance protein triggers an “alarm” that communicates the danger to the cell’s nucleus. The communication between the resistance protein and nucleus occurs through a mechanism called a signaling pathway. (more…)

Read More

‘Novel Ocean-Crust Mechanism Could Affect World’s Carbon Budget’

The Earth is constantly manufacturing new crust, spewing molten magma up along undersea ridges at the boundaries of tectonic plates. The process is critical to the planet’s metabolism, including the cycle of underwater life and the delicate balance of carbon in the ocean and atmosphere. 

Now, scientists at the Woods Hole Oceanographic Institution (WHOI) have observed ocean crust forming in an entirely unexpected way—one that may influence those cycles of life and carbon and, in turn, affect the much-discussed future of the world’s climate. 

Working at the Guaymas basin in the Gulf of California, WHOI scientists confirmed what they suspected from brief glimpses of the area during previous missions: The inner Earth is injecting swaths of magma called sills as far as 50 kilometers away from the plate boundary, on each side of the ridge —nearly 10 times farther from such an active ocean ridge than had been observed before.  (more…)

Read More

Vaccine for Urinary Tract Infections is One Step Closer

*Study sheds light on what E. coli genes are doing inside the body during infection* 

E. coli bacteria. Image credit: Amy Simms, Ph.D

ANN ARBOR, Mich. Urinary tract infections are a painful, recurring problem for millions of women. They are also getting more dangerous as bacteria develop resistance to the most common treatments.

Scientists from the University of Michigan have moved one step closer to a vaccine that could prevent a majority of urinary tract infections, which are caused by E. coli bacteria. Using a genetic technique rarely used to look at infections in human hosts, the researchers studied how the E. coli bacteria operate and discovered key differences between how the bacteria’s genes behave in women and how they behave in mice used in experiments.

Their findings, published online Nov. 11 in PLoS Pathogens, could lead to developments that would save billions in health care costs and millions of doctors’ visits and hospitalizations from urinary tract infections each year. (more…)

Read More

UCLA Researchers Identify Molecular Program for Brain Repair Following Stroke

Mouse Stroke. An MRI of a mouse brain after stroke. The mouse section has been stained to show cell bodies. Image credit: University of California

A stroke wreaks havoc in the brain, destroying its cells and the connections between them. Depending on its severity and location, a stroke can impact someone’s life forever, affecting motor activity, speech, memories, and more. 

The brain makes an attempt to rally by itself, sprouting a few new connections, called axons, that reconnect some areas of the brain. But the process is weak, and the older the brain, the poorer the repair. Still, understanding the cascade of molecular events that drive even this weak attempt could lead to developing drugs to boost and accelerate this healing process. 

Now researchers at UCLA have achieved a promising first step. Reporting in the current online edition of the journal Nature Neuroscience, senior author Dr. S. Thomas Carmichael, a UCLA associate professor of neurology, and colleagues have, for the first time, identified in the mouse the molecular cascade that drives the process of reconnection or sprouting in the adult brain after stroke.  (more…)

Read More