Tag Archives: cell

To Cap or Not to Cap: Scientists Find New RNA Phenomenon That Challenges Dogma

COLUMBUS, Ohio – Some RNA molecules spend time in a restful state akin to hibernation rather than automatically carrying out their established job of delivering protein-building instructions in cells, new research suggests.

And instead of being a fluke or a mistake, the research suggests that this restful period appears to be a programmed step for RNA produced by certain types of genes, including some that control cell division and decide where proteins will work in a cell to sustain the cell’s life.

This could mean that protein production in cells is not as clear-cut as biology textbooks suggest, scientists say. (more…)

Read More

Cells in Blood Vessel Found To Cling More Tightly in Regions of Rapid Flow

Clogging of pipes leading to the heart is the planet’s number one killer. Surgeons can act as medical plumbers to repair some blockages, but we don’t fully understand how this living organ deteriorates or repairs itself over time.

Researchers at the University of Washington have studied vessel walls and found the cells pull more tightly together, reducing vascular leakage, in areas of fast-flowing blood. The finding could influence how doctors design drugs to treat high cholesterol, or how cardiac surgeons plan their procedures. (more…)

Read More

Locked RNA Editing Yields Odd Fly Behavior

At the level of proteins, organisms can adapt by editing their RNA — and an editor can even edit itself. Brown University scientists working with fruit flies found that “locking down” the self-editing process at two extremes created some strange behaviors. They also found that the process is significantly affected by temperature.

PROVIDENCE, R.I. [Brown University] — Because a function of RNA is to be translated as the genetic instructions for the protein-making machinery of cells, RNA editing is the body’s way of fine-tuning the proteins it produces, allowing us to adapt. The enzyme ADAR, which does this editing job in the nervous system of creatures ranging from mice to men, even edits itself. In a new study that examined the self-editing process and locked it down at two extremes in fruit flies, Brown University scientists found some surprising insights into how this “fine-tuning of the fine-tuner” happens, including bizarre behavioral effects that come about when the self-editor can’t edit. (more…)

Read More

‘Bed-of-Nails’ Breast Implant Deters Cancer Cells

Researchers at Brown University have created an implant that appears to deter breast cancer cell regrowth. Made from a common federally approved polymer, the implant is the first to be modified at the nanoscale in a way that causes a reduction in the blood-vessel architecture that breast cancer tumors depend upon, while also attracting healthy breast cells. Results are published in Nanotechnology.

PROVIDENCE, R.I. [Brown University] — One in eight women in the United States will develop breast cancer. Of those, many will undergo surgery to remove the tumor and will require some kind of breast reconstruction afterward, often involving implants. Cancer is an elusive target, though, and malignant cells return for as many as one-fifth of women originally diagnosed, according to the American Cancer Society. (more…)

Read More

Yale Study: How Mitochondrial DNA Defects Cause Inherited Deafness

Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed cell death. The study is in the Feb. 17 issue of Cell.

Mitochondria are cellular structures that function as “cellular power plants” because they generate most of the cell’s supply of energy. They contain DNA inherited from one’s mother. Mitochondria determine whether a cell lives or dies via the process of programmed cell death, or apoptosis. (more…)

Read More

Genes Linked To Cancer Could Be Easier To Detect With Liquid Lasers

ANN ARBOR, Mich.— Using a liquid laser, University of Michigan researchers have developed a better way to detect the slight genetic mutations that might predispose a person to a particular type of cancer or other diseases.

Their results are published in the current edition of the German journal Angewandte Chemie. (more…)

Read More

Researchers Suggest A Proximate Cause of Cancer

AUSTIN, TX — Researchers from The University of Texas at Austin’s Department of Chemical Engineering are the first to show that mechanical property changes in cells may be responsible for cancer progression — a discovery that could pave the way for new approaches to predict, treat and prevent cancer.

Postdoctoral student Parag Katira and his adviser, Roger T. Bonnecaze, department chair in the Cockrell School of Engineering and T. Brockett Hudson Professor, worked with Muhammad Zaman of Boston University to devise a 3-D cancer model that shows the softening of cells and changes in cell binding cause cancerous behavior in cells. These mechanical property changes cause cells to divide uncontrollably — making them less likely to die and resulting in malignant tumor growth. The findings present a unique physics-based perspective on understanding cancer progression and were published recently in the American Physical Society’s journal Physical Review Letters. (more…)

Read More

Researchers Do Precise Gene Therapy Without A Needle

COLUMBUS, Ohio – For the first time, researchers have found a way to inject a precise dose of a gene therapy agent directly into a single living cell without a needle.

The technique uses electricity to “shoot” bits of therapeutic biomolecules through a tiny channel and into a cell in a fraction of a second.

L. James Lee and his colleagues at Ohio State University describe the technique in the online edition of the journal Nature Nanotechnology, where they report successfully inserting specific doses of an anti-cancer gene into individual leukemia cells to kill them. (more…)

Read More