Tag Archives: energy

Youth with diabetes at greater risk following transition from pediatric to adult care

Type 1 diabetes is a condition in which the body does not produce insulin and cannot convert sugar, starches and other food into energy. Generally diagnosed during childhood or adolescence, the disease requires lifelong access to medical care and intensive daily self-management.

As children with Type 1 diabetes grow into young adults, they must leave their pediatric health care providers for adult providers. But the timing of this process and its impact on the young people’s health had not been fully explored. (more…)

Read More

Long Predicted Atomic Collapse State Observed in Graphene

Berkeley Lab researchers recreate elusive phenomenon with artificial nuclei

The first experimental observation of a quantum mechanical phenomenon that was predicted nearly 70 years ago holds important implications for the future of graphene-based electronic devices. Working with microscopic artificial atomic nuclei fabricated on graphene, a collaboration of researchers led by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have imaged the “atomic collapse” states theorized to occur around super-large atomic nuclei.

“Atomic collapse is one of the holy grails of graphene research, as well as a holy grail of atomic and nuclear physics,” says Michael Crommie, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Physics Department. “While this work represents a very nice confirmation of basic relativistic quantum mechanics predictions made many decades ago, it is also highly relevant for future nanoscale devices where electrical charge is concentrated into very small areas.” (more…)

Read More

Beetroot juice – the winning formula for team sports

New research shows that drinking beetroot juice can significantly improve performance in team sports involving bouts of high intensity exercise.

Trials by the University of Exeter Sport and Health Sciences department have found a direct link between the high nitrate content of beetroot and the chemical processes needed to get muscles working at their most efficient during intermittent bursts of activity.

During the tests, sportsmen were either given beetroot juice with a full complement of nitrates, or juice which had had the nitrate removed. Those who had taken the nitrate-rich juice were found to have a distinct advantage when exercising over those who had been given the control juice to drink. (more…)

Read More

Engineering Bacterial Live Wires

Berkeley Lab scientists discover the balance that allows electricity to flow between cells and electronics

Just like electronics, living cells use electrons for energy and information transfer. Despite electrons being a common “language” of the living and electronic worlds, living cells cannot speak to our largely technological realm. Cell membranes are largely to blame for this inability to plug cells into our computers: they form a greasy barrier that tightly controls charge balance in a cell.  Thus, giving a cell the ability to communicate directly with an electrode would lead to enormous opportunities in the development of new energy conversion techniques, fuel production, biological reporters, or new forms of bioelectronic systems. (more…)

Read More

Vortex Loops Could Untie Knotty Physics Problems

University of Chicago physicists have succeeded in creating a vortex knot—a feat akin to tying a smoke ring into a knot. Linked and knotted vortex loops have existed in theory for more than a century, but creating them in the laboratory had previously eluded scientists.

Vortex knots should, in principle, be persistent, stable phenomena. “The unexpected thing is that they’re not,” said Dustin Kleckner, a postdoctoral scientist at UChicago’s James Franck Institute. “They seem to break up in a particular way. They stretch themselves, which is a weird behavior.” (more…)

Read More

Wanted: A Life Outside the Workplace

A memo to employers: Just because your workers live alone doesn’t mean they don’t have lives beyond the office.

New research at Michigan State University suggests the growing number of workers who are single and without children have trouble finding the time or energy to participate in non-work interests, just like those with spouses and kids.

Workers struggling with work-life balance reported less satisfaction with their lives and jobs and more signs of anxiety and depression. (more…)

Read More

A Dual Look at Photosystem II Using the World’s Most Powerful X-Ray Laser

Berkeley Lab and SLAC Researchers Demonstrate Room Temperature Simultaneous Diffraction/Spectroscopy of Metalloenzymes

From providing living cells with energy, to nitrogen fixation, to the splitting of water molecules, the catalytic activities of metalloenzymes – proteins that contain a metal ion – are vital to life on Earth. A better understanding of the chemistry behind these catalytic activities could pave the way for exciting new technologies, most prominently artificial photosynthesis systems that would provide  clean, green and renewable energy. Now, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory have taken a major step towards achieving this goal.

Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser, the researchers were able to simultaneously image at room temperature the atomic and electronic structures of photosystem II, a metalloenzyme critical to photosynthesis. (more…)

Read More

Revealing the Secrets of Motility in Archaea

Scientists from Berkeley Lab and the Max Planck Institute for Terrestrial Microbiology analyze a unique microbial motor

The protein structure of the motor that propels archaea has been characterized for the first time by a team of scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Germany’s Max Planck Institute (MPI) for Terrestrial Microbiology.

The motility structure of this third domain of life has long been called a flagellum, a whip-like filament that, like the well-studied bacterial flagellum, rotates like a propeller. But although the archaeal structure has a similar function, it is so profoundly different in structure, genetics, and evolution that the researchers argue it deserves its own name: archaellum. (more…)

Read More