Tag Archives: molecular oxygen

Morphing manganese

UD researchers report new discovery in ‘Science’ about manganese in aquatic environments

An often-overlooked form of manganese, an element critical to many life processes, is far more prevalent in ocean environments than previously known, according to a study led by University of Delaware researchers that was published this week in Science.

The discovery alters understanding of the chemistry that moves manganese and other elements, like oxygen and carbon, through the natural world. Manganese is an essential nutrient for most organisms and helps plants produce oxygen during photosynthesis. (more…)

Read More

A Dual Look at Photosystem II Using the World’s Most Powerful X-Ray Laser

Berkeley Lab and SLAC Researchers Demonstrate Room Temperature Simultaneous Diffraction/Spectroscopy of Metalloenzymes

From providing living cells with energy, to nitrogen fixation, to the splitting of water molecules, the catalytic activities of metalloenzymes – proteins that contain a metal ion – are vital to life on Earth. A better understanding of the chemistry behind these catalytic activities could pave the way for exciting new technologies, most prominently artificial photosynthesis systems that would provide  clean, green and renewable energy. Now, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory have taken a major step towards achieving this goal.

Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser, the researchers were able to simultaneously image at room temperature the atomic and electronic structures of photosystem II, a metalloenzyme critical to photosynthesis. (more…)

Read More

Ocean’s Harmful Low-Oxygen Zones growing, are Sensitive to Small Changes in Climate

Fluctuations in climate can drastically affect the habitability of marine ecosystems, according to a new study by UCLA scientists that examined the expansion and contraction of low-oxygen zones in the ocean.

The UCLA research team, led by assistant professor of atmospheric and oceanic sciences Curtis Deutsch, used a specialized computer simulation to demonstrate for the first time that the size of low-oxygen zones created by respiring bacteria is extremely sensitive to changes in depth caused by oscillations in climate. These oxygen-depleted regions, which expand or contract depending on their depth, pose a distinct threat to marine life. (more…)

Read More