Tag Archives: protein complex

How a Shape-shifting DNA-repair Machine Fights Cancer

Berkeley Lab’s Advanced Light Source reveals inner-workings of essential protein found throughout life.

Maybe you’ve seen the movies or played with toy Transformers, those shape-shifting machines that morph in response to whatever challenge they face. It turns out that DNA-repair machines in your cells use a similar approach to fight cancer and other diseases, according to research led by scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).

As reported in a pair of new studies, the scientists gained new insights into how a protein complex called Mre11-Rad50 reshapes itself to take on different DNA-repair tasks. (more…)

Read More

Engineering Bacterial Live Wires

Berkeley Lab scientists discover the balance that allows electricity to flow between cells and electronics

Just like electronics, living cells use electrons for energy and information transfer. Despite electrons being a common “language” of the living and electronic worlds, living cells cannot speak to our largely technological realm. Cell membranes are largely to blame for this inability to plug cells into our computers: they form a greasy barrier that tightly controls charge balance in a cell.  Thus, giving a cell the ability to communicate directly with an electrode would lead to enormous opportunities in the development of new energy conversion techniques, fuel production, biological reporters, or new forms of bioelectronic systems. (more…)

Read More

A Dual Look at Photosystem II Using the World’s Most Powerful X-Ray Laser

Berkeley Lab and SLAC Researchers Demonstrate Room Temperature Simultaneous Diffraction/Spectroscopy of Metalloenzymes

From providing living cells with energy, to nitrogen fixation, to the splitting of water molecules, the catalytic activities of metalloenzymes – proteins that contain a metal ion – are vital to life on Earth. A better understanding of the chemistry behind these catalytic activities could pave the way for exciting new technologies, most prominently artificial photosynthesis systems that would provide  clean, green and renewable energy. Now, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory have taken a major step towards achieving this goal.

Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser, the researchers were able to simultaneously image at room temperature the atomic and electronic structures of photosystem II, a metalloenzyme critical to photosynthesis. (more…)

Read More

Tiny Capsule Effectively Kills Cancer Cells

Scientists create nanoscale vehicle to battle cancer without harming healthy cells

A tiny capsule invented at a UCLA lab could go a long way toward improving cancer treatment.
Devising a method for more precise and less invasive treatment of cancer tumors, a team led by researchers from the UCLA Henry Samueli School of Engineering and Applied Science has developed a degradable nanoscale shell to carry proteins to cancer cells and stunt the growth of tumors without damaging healthy cells.

In a new study, published online Feb. 1 in the peer-reviewed journal Nano Today, a group led by Yi Tang, a professor of chemical and biomolecular engineering and a member of the California NanoSystems Institute at UCLA, reports developing tiny shells composed of a water-soluble polymer that safely deliver a protein complex to the nucleus of cancer cells to induce their death. The shells, which at about 100 nanometers are roughly half the size of the smallest bacterium, degrade harmlessly in non-cancerous cells. (more…)

Read More

Making Blood-Sucking Deadly for Mosquitoes

*Inhibiting a molecular process cells use to direct proteins to their proper destinations causes more than 90 percent of affected mosquitoes to die within 48 hours of blood feeding, a UA team of biochemists found.*

Mosquitoes die soon after a blood meal if certain protein components are experimentally disrupted, a team of biochemists at the University of Arizona has discovered.

The approach could be used as an additional strategy in the worldwide effort to curb mosquito-borne diseases like dengue fever, yellow fever and malaria. (more…)

Read More

Discovery of a Mechanism that Controls the Expression of a Protein Involved in Numerous Cancers

Marc Therrien. Image credit: University of Montreal

Researchers at the Institute for Research in Immunology and Cancer (IRIC) of the Université de Montréal have identified a new mechanism controlling the transmission of an abnormal signal at the origin of several cancers. In an article published in the journal Cell, Marc Therrien’s team explains the recent discovery of a protein complex that controls the RAS/MAPK signalling pathway, responsible for some of the deadliest cancers, including pancreatic, colon and lung cancers, and melanomas. This regulating mechanism could prove to be a promising therapeutic target for the treatment of these diseases.  The study conducted on the drosophila model organism is to be verified in humans in a forthcoming step. (more…)

Read More