Misguided killer T cells may be the missing link in sustained tissue damage in the brains and spines of people with multiple sclerosis, findings from the University of Washington reveal. Cytoxic T cells, also known as CD8+ T cells, are white blood cells that normally are in the body’s arsenal to fight disease.
Multiple sclerosis is characterized by inflamed lesions that damage the insulation surrounding nerve fibers and destroy the axons, electrical impulse conductors that look like long, branching projections. Affected nerves fail to transmit signals effectively. (more…)
TORONTO, ON – University of Toronto Faculty of Medicine researchers have uncovered a genetic basis for fundamental differences between humans and other vertebrates that could also help explain why humans are susceptible to diseases not found in other species.
Scientists have wondered why vertebrate species, which look and behave very differently from one another, nevertheless share very similar repertoires of genes. For example, despite obvious physical differences, humans and chimpanzees share a nearly identical set of genes. (more…)
Mild cooling of the brain after a head injury prevents the later development of epileptic seizures, according to an animal study reported this month in the Annals of Neurology.
Epilepsy can result from genetics or brain damage. Traumatic head injury is the leading cause of acquired epilepsy in young adults. It is often difficult to manage with antiepileptic drugs. The mechanisms behind the onset of epileptic seizures after brain injury are not known . There is currently no treatment to cure it, prevent it, or even limit its severity. (more…)
Hot flushes are not “in the head,” but new research suggests they may start there. A UA research team has identified a region in the brain that may trigger the uncomfortable surges of heat most women experience in the first few years of menopause.
Hot flushes – also called hot flashes – affect millions of people, and not just women. Yet, it is still unclear what causes the episodes of temperature discomfort, often accompanied by profuse sweating.
Now a team of researchers around Dr. Naomi Rance, a professor in the department of pathology at the UA College of Medicine, has come closer to understanding the mechanism of hot flushes, a necessary step for potential treatment options down the road. This research was published recently in the Proceedings of the National Academy of Sciences. (more…)
Researchers have found the first proof that a chemical in the brain called glutamate is linked to suicidal behavior, offering new hope for efforts to prevent people from taking their own lives.
Writing in the journal Neuropsychopharmacology, Michigan State University’s Lena Brundin and an international team of co-investigators present the first evidence that glutamate is more active in the brains of people who attempt suicide. Glutamate is an amino acid that sends signals between nerve cells and has long been a suspect in the search for chemical causes of depression. (more…)
Moths are able to enjoy a pollinator’s buffet of flowers – in spite of being among the insect world’s picky eaters – because of two distinct “channels” in their brains, scientists at the University of Washington and University of Arizona have discovered.
One olfactory channel governs innate preferences of the palm-sized hawk moths that were studied – insects capable of traveling miles in a single night in search of favored blossoms. The other allows them to learn about alternate sources of nectar when their first choices are not available.
For moths, the ability to seek and remember alternate sources of food helps them survive harsh, food-deprived conditions. Scientists knew bees could learn, but this is the first proof that moths can too. (more…)
A new study in the journal Neuron suggests that the brain uses a different region than neuroscientists had thought to associate objects and locations in the space around an individual. Knowing where this fundamental process occurs could help treat disease and brain injury as well as inform basic understanding of how the brain supports memory and guides behavior.
PROVIDENCE, R.I. [Brown University] — Where are you?
Conventional wisdom in brain research says that you just used your hippocampus to answer that question, but that might not be the whole story. The context of place depends on not just how you got there, but also the things you see around you. A new study in Neuron provides evidence that a different part of the brain is important for understanding where you are based on the spatial layout of the objects in that place. The finding, in rats, has a direct analogy to primate neuroanatomy. (more…)
Brain shows diminished response to untrustworthiness, UCLA scientists report
Why are older people especially vulnerable to becoming victims of fraud? A new UCLA study indicates that an important clue may lie in a particular region of the brain that influences the ability to discern who is honest and who is trying to deceive us.
Older people, more than younger adults, may fail to interpret an untrustworthy face as potentially dishonest, the study shows. The reason for this, the UCLA life scientists found, seems to be that a brain region called the anterior insula, which is linked to disgust and is important for discerning untrustworthy faces, is less active in older adults. (more…)