Researchers from North Carolina State University have developed a new technique for creating devices out of a water-based hydrogel material that can be patterned, folded and used to manipulate objects. The technique holds promise for use in “soft robotics” and biomedical applications.
“This work brings us one step closer to developing new soft robotics technologies that mimic biological systems and can work in aqueous environments,” says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the work. (more…)
Behind the dazzling variety of shapes and forms found in trees hides a remarkably similar architecture based on fundamental, shared principles, UA ecologists have discovered.
Researchers in the University of Arizona’s department of ecology and evolutionary biology have found that despite differences in appearance, trees across species share remarkably similar architecture and can tell scientists a lot about an entire forest.
Just by looking at a tree’s branching pattern, it turns out, scientists can gather clues about how it functions – for example how much carbon dioxide it exchanges with the atmosphere or how much water transpires through its leaves – regardless of the tree’s shape or species. (more…)
The history of women with HIV/AIDS in the United States is really a story of racial and ethnic health disparities.
Overall, the rate of American women contracting the disease relative to men has climbed from 8 percent in the 1980s to 25 percent today. But most of this burden is in underserved communities: one in 32 African-American women will be diagnosed with HIV in their lifetime, as will one in 106 Latina women. Meanwhile, one in 526 Caucasian and Asian women will contract the virus. Death rates are also higher for African-American and Latina women, making it one of the leading causes of death for those groups. (more…)
UA physicist Andrei Lebed has stirred the physics community with an intriguing idea yet to be tested experimentally: The world’s most iconic equation, Albert Einstein’s E=mc2, may be correct or not depending on where you are in space.
With the first explosions of atomic bombs, the world became witness to one of the most important and consequential principles in physics: Energy and mass, fundamentally speaking, are the same thing and can, in fact, be converted into each other.
This was first demonstrated by Albert Einstein’s Theory of Special Relativity and famously expressed in his iconic equation, E=mc2, where E stands for energy, m for mass and c for the speed of light (squared). (more…)
Researchers at the UH Manoa School of Ocean and Earth Science and Technology (SOEST) made a discovery that challenges a major theory in the field of coral reef ecology.
The general assumption has been that the more flexible corals are, regarding which species of single-celled algae (Symbiodinium) they host in coral tissues, the greater ability corals will have to survive environmental stress. In their paper published August 29, 2012, however, scientists at the Hawaii Institute of Marine Biology (HIMB) at SOEST and colleagues documented that the more flexible corals are, the more sensitive to environment disturbances they are. (more…)
AUSTIN, Texas — A team of astronomers led by researchers from The University of Texas at Austin has confirmed the emission of gravitational waves from the second-strongest known source in our galaxy by studying the shrinking orbital period of a unique pair of burnt-out stars. Their observations tested Albert Einstein’s theory of general relativity in a new regime. The results will be published soon in The Astrophysical Journal Letters.
Last year, the same team discovered that the two white dwarf stars are so close together that they make a complete orbit in less than 13 minutes, and they should be gradually slipping closer. The system, called SDSS J065133.338+284423.37 (J0651 for short), contains two white dwarf stars, which are the remnant cores of stars like our sun. (more…)
Stephen Roach is a respected authority on Asia — China in particular — and an often-cited and widely recognized prophet on the global economy.
Until recently chair of Morgan Stanley Asia and long the firm’s chief economist, Roach came to Yale in 2010 as a senior fellow in the newly inaugurated Jackson Institute for Global Affairs, with a joint appointment at the School of Management (SOM). This spring Roach announced he would be retiring from Morgan Stanley after 30 years with the firm to teach full time at Yale.
YaleNews recently met with the economist in his office to discuss his new career as a teacher and to get his prognosis on the future of the world economy. (more…)
The theory that pigeons’ famous skill at navigation is down to iron-rich nerve cells in their beaks has been disproved by a new study published in Nature.
The study shows that iron-rich cells in the pigeon beak are in fact specialised white blood cells, called macrophages. This finding, which shatters the established dogma, puts the field back on course as the search for magnetic cells continues.(more…)