Tag Archives: radiation

Bright Stars to Black Holes: UA Astronomer Awarded for Her Research

In addition to being selected as one of 50 scholars awarded fellowships each year at the prestigious Radcliffe Institute at Harvard University, the UA’s Feryal Ozel has won the 2013 American Physical Society’s Maria Goeppert Mayer Award for her cutting-edge research on neutron stars.

Feryal Ozel studies two things most people don’t think about everyday: neutron stars and black holes.

An associate professor of astronomy at the University of Arizona, Ozel has won the 2013 American Physical Society’s Maria Goeppert Mayer Award for her work on neutron stars and her dedication to public outreach and education in science and astronomy. In addition, this year she is completing a prestigious fellowship at the Radcliffe Institute at Harvard University. Ozel came to the UA in 2003 as a NASA Hubble fellow and began a faculty position in 2005. (more…)

Read More

Fishing for Answers off Fukushima

Japan fisheries data provides a look at how the ocean is faring 18 months after the worst accidental release of radiation to the ocean in history

Japan’s triple disaster,” as it has become known, began on March 11, 2011, and remains unprecedented in its scope and complexity. To understand the lingering effects and potential public health implications of that chain of events, scientists are turning to a diverse and widespread sentinel in the world’s ocean: fish.

Events on March 11 began with a magnitude 9.0 earthquake, the fourth largest ever recorded. The earthquake in turn spawned a massive 40-foot tsunami that inundated the northeast Japanese coast and resulted in an estimated 20,000 missing or dead. Finally, the wave caused catastrophic damage to the Fukushima Dai-ichi nuclear power plant, resulting in the largest accidental release of radiation to the ocean in history, 80 percent of which ended up in the Northwest Pacific Ocean. (more…)

Read More

Measuring Table-Top Accelerators’ State-of-the-Art Beams

Studies by Berkeley Lab scientists of electron beam quality in laser plasma accelerators include novel tests for slice-energy spread

Part Two: Slicing through the electron beam

Wim Leemans of Berkeley Lab’s Accelerator and Fusion Research Division heads LOASIS, the Laser and Optical Accelerator Systems Integrated Studies, an oasis indeed for students pursuing graduate studies in laser plasma acceleration (LPA). Among the most promising applications of future table-top accelerators are new kinds of light sources, in which their electron beams power free electron lasers.

“If our LPA electron bunches had good enough quality for free electron lasers – and were really only femtoseconds long – we should see a particular kind of radiation called coherent optical transition radiation, or COTR,” Leemans says. “So I assigned my doctoral student Chen Lin, a graduate of Peking University and now a postdoc there, to find it.” (more…)

Read More

Breakthrough Technique Images Breast Tumors in 3-D with Great Clarity, Reduced Radiation

Like cleaning the lenses of a foggy pair of glasses, scientists are now able to use a technique developed by UCLA researchers and their European colleagues to produce three-dimensional images of breast tissue that are two to three times sharper than those made using current CT scanners at hospitals. The technique also uses a lower dose of X-ray radiation than a mammogram.

These higher-quality images could allow breast tumors to be detected earlier and with much greater accuracy. One in eight women in the United States will be diagnosed with breast cancer during her lifetime.

The research is published the week of Oct. 22 in the early edition of the journal Proceedings of the National Academy of Sciences. (more…)

Read More

Dwarf Species of Fanged Dinosaur Emerges from Southern Africa

A new species of plant-eating dinosaur with tiny, 1-inch-long jaws has come to light in South African rocks dating to the early dinosaur era, some 200 million years ago.

This “punk-sized” herbivore is one of a menagerie of bizarre, tiny, fanged plant-eaters called heterodontosaurs, or “different toothed reptiles,” which were among the first dinosaurs to spread across the planet. (more…)

Read More

First Stars, Galaxies Formed more Rapidly than Expected

Analysis of data from the National Science Foundation’s South Pole Telescope, for the first time, more precisely defines the period of cosmological evolution when the first stars and galaxies formed and gradually illuminated the universe. The data indicate that this period, called the epoch of reionization, was shorter than theorists speculated — and that it ended early.

“We find that the epoch of reionization lasted less than 500 million years and began when the universe was at least 250 million years old,” said Oliver Zahn, a postdoctoral fellow at the Berkeley Center for Cosmological Physics at the University of California, Berkeley, who led the study. “Before this measurement, scientists believed that reionization lasted 750 million years or longer, and had no evidence as to when reionization began.” (more…)

Read More

MU Research Team Creates New Cancer Drug that is 10 Times More Potent

Drug efficiently targets breast, lung and colon cancer; clinical trials could start within two years.

COLUMBIA, Mo. ­—  Legend has it that Ralph Waldo Emerson once said, “Build a better mousetrap, and the world will beat a path to your door.” University of Missouri researchers are doing just that, but instead of building mousetraps, the scientists are targeting cancer drugs. In a new study, MU medicinal chemists have taken an existing drug that is being developed for use in fighting certain types of cancer, added a special structure to it, and created a more potent, efficient weapon against cancer.

“Over the past decade, we have seen an increasing interest in using carboranes in drug design,” said Mark W. Lee Jr., assistant professor of chemistry in College of Arts and Science. “Carboranes are clusters of three elements — boron, carbon and hydrogen. Carboranes don’t fight cancer directly, but they aid in the ability of a drug to bind more tightly to its target, creating a more potent mechanism for destroying the cancer cells.” (more…)

Read More

Good Vibrations

Berkeley Lab and UC Berkeley Researchers Record First Direct Observations of Quantum Effects in an Optomechanical System

A long-time staple of science fiction is the tractor beam, a technology in which light is used to move massive objects – recall the tractor beam in the movie Star Wars that captured the Millennium Falcon and pulled it into the Death Star. While tractor beams of this sort remain science fiction, beams of light today are being used to mechanically manipulate atoms or tiny glass beads, with rapid progress being made to control increasingly larger objects. Those who see major roles for optomechanical systems in a host of future technologies will take heart in the latest results from a first-of-its-kind experiment.

Scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, using a unique optical trapping system that provides ensembles of ultracold atoms, have recorded the first direct observations of distinctly quantum optical effects – amplification and squeezing – in an optomechanical system. Their findings point the way toward low-power quantum optical devices and enhanced detection of gravitational waves among other possibilities. (more…)

Read More