A fundamental shift in the Indian monsoon has occurred over the last few millennia, from a steady humid monsoon that favored lush vegetation to extended periods of drought, reports a new study led by researchers at the Woods Hole Oceanographic Institution (WHOI). The study has implications for our understanding of the monsoon’s response to climate change.
The Indian peninsula sustains over a billion people, yet it lies at the same latitude as the Sahara Desert. Without a monsoon, most of India would be dry and uninhabitable. The ability to predict the timing and amount of the next year’s monsoon is vital, yet even our knowledge of the monsoon’s past variability remains incomplete. (more…)
When Sifrhippus sandae, the earliest known horse, first appeared in the forests of North America more than 50 million years ago, it would not have been mistaken for a Clydesdale.
It weighed in at around 12 pounds–and it was destined to get much smaller over the ensuing millennia.
Sifrhippus lived during the Paleocene-Eocene Thermal Maximum (PETM), a 175,000-year interval of time some 56 million years ago in which average global temperatures rose by about 10 degrees Fahrenheit. (more…)
*In “The Great Dying” 250 million years ago, the end came slowly*
The deadliest mass extinction of all took a long time to kill 90 percent of Earth’s marine life–and it killed in stages–according to a newly published report.
It shows that mass extinctions need not be sudden events.
Thomas Algeo, a geologist at the University of Cincinnati, and 13 colleagues have produced a high-resolution look at the geology of a Permian-Triassic boundary section on Ellesmere Island in the Canadian Arctic. (more…)
What’s the best way to study the Antarctic’s ecosystem? Follow the penguins.
Scientists are tracking penguins on land, under the sea, and even from space to unravel the environmental dynamics in the West Antarctic Peninsula as the region experiences climate change.
“We’re not just down there bird watching,” said Matthew Oliver, assistant professor of oceanography in UD’s College of Earth, Ocean, and Environment. “This is a concerted effort to put the whole ecosystem together.” (more…)
Nearly one-third of CO2 emissions due to human activities enters the world’s oceans. By reacting with seawater, CO2 increases the water’s acidity, which may significantly reduce the calcification rate of such marine organisms as corals and mollusks, resulting in the potential loss of ecosystems. The extent to which human activities have raised the surface level of acidity, however, has been difficult to detect on regional scales because it varies naturally from one season and one year to the next, and between regions, and direct observations go back only 30 years.
By combining computer modeling with observations, an international team of scientists concluded that anthropogenic CO2 emissions, resulting from the influence of human beings, over the last 100 to 200 years have already raised ocean acidity far beyond the range of natural variations. The study is published in the January 22, 2012 online issue of Nature Climate Change. (more…)
Woods Hole Oceanographic Institution (WHOI) scientists have discovered that bacterial communication could have a significant impact on the planet’s climate.
In the ocean, bacteria coalesce on tiny particles of carbon-rich detritus sinking through the depths. WHOI marine biogeochemists Laura Hmelo, Benjamin Van Mooy, and Tracy Mincer found that these bacteria send out chemical signals to discern if other bacteria are in the neighborhood. If enough of their cohorts are nearby, then bacteria en masse commence secreting enzymes that break up the carbon-containing molecules within the particles into more digestible bits. It has been suggested that coordinated expression of enzymes is very advantageous for bacteria on sinking particles, and Hmelo and her colleagues have uncovered the first proof of this in the ocean. (more…)
A NASA-led research team has confirmed what Walt Disney told us all along: Earth really is a small world, after all.
Since Charles Darwin’s time, scientists have speculated that the solid Earth might be expanding or contracting. That was the prevailing belief, until scientists developed the theory of plate tectonics, which explained the large-scale motions of Earth’s lithosphere, or outermost shell. Even with the acceptance of plate tectonics half a century ago, some Earth and space scientists have continued to speculate on Earth’s possible expansion or contraction on various scientific grounds.
Now a new NASA study, published recently in Geophysical Research Letters, has essentially laid those speculations to rest. Using a cadre of space measurement tools and a new data calculation technique, the team detected no statistically significant expansion of the solid Earth. (more…)
A new analysis of data from NASA’s Galileo spacecraft has revealed that beneath the surface of Jupiter’s volcanic moon Io is an “ocean” of molten or partially molten magma.
The finding, from a study published May 13 in the journal Science, is the first direct confirmation of such a magma layer on Io and explains why the moon is the most volcanic object known in the solar system. The research was conducted by scientists from UCLA, UC Santa Cruz and the University of Michigan–Ann Arbor. (more…)